DCT Based High Quality Image Compression

  • Nikolay Ponomarenko
  • Vladimir Lukin
  • Karen Egiazarian
  • Jaakko Astola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


DCT based image compression using blocks of size 32x32 is considered. An effective method of bit-plane coding of quantized DCT coefficients is proposed. Parameters of post-filtering for removing of blocking artifacts in decoded images are given. The efficiency of the proposed method for test images compression is analyzed. It is shown that the proposed method is able to provide the quality of decoding images higher than for JPEG2000 by up to 1.9 dB.


Compression Ratio Discrete Cosine Transform Discrete Wavelet Transform Image Compression Image Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Transactions on Computers 23, 90–93 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Rao, K., Yip, P.: Discrete Cosine Transform, Algorithms, Advantages, Applications. Academic Press, London (1990)zbMATHGoogle Scholar
  3. 3.
    Wallace, G.K.: The JPEG Still Picture Compression Standard. Comm. of the ACM 34(4) (1991)Google Scholar
  4. 4.
    Pennebaker, W.B., Mitchell, J.L.: JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, New York (1993)Google Scholar
  5. 5.
    Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. on Consumer Electronics 46(4), 1103–1127 (2000)CrossRefGoogle Scholar
  6. 6.
    Taubman, D., Marcellin, M.: JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)Google Scholar
  7. 7.
    Egiazarian, K., Helsingius, M., Kuosmanen, P., Astola, J.: Removal of blocking and ringing artifacts using transform domain denoising. In: Proc. of ISCAS 1999, vol. 4, pp. 139–142 (1999)Google Scholar
  8. 8.
    Rissänen, J.: Generalized kraft inequality and arithmetic coding. IBM J. Res. Develop. 20, 198–203 (1976)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Langdon, G.G., Rissanen, J.J.: A simple general binary source code. IEEE Trans. Inf. Theory IT-28, 800–803 (1982)CrossRefGoogle Scholar
  10. 10.
    Yaroslavsky, L.: Local Adaptive Filtering in Transform Domain for Image Restoration, Enhancement and Target Location. In: 6th Int. Workshop on Digital Image Processing and Computer Graphics (DIP 1997). SPIE, vol. 3346, pp. 2–17 (1997)Google Scholar
  11. 11.
    Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: Partition Schemes in DCT Based Image Compression. Technical Report 3-2002, ISBN 952-15-0811-6, Tampere University of Technology, Finland (2002)Google Scholar
  12. 12.
    Malvar, H.S., Staelin, D.H.: The LOT: transform coding without blocking effects. IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 553–559 (1989)CrossRefGoogle Scholar
  13. 13.
    Tran, T.D., de Queiroz, R., Nguyen, T.Q.: The generalized lapped biorthogonal transform. In: Proceedings of the ICASSP 1998, vol. 3, pp. 1441–1444 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nikolay Ponomarenko
    • 1
  • Vladimir Lukin
    • 1
  • Karen Egiazarian
    • 2
  • Jaakko Astola
    • 2
  1. 1.Department 504National Aerospace University (Kharkov Aviation Institute)KharkovUkraine
  2. 2.Tampere International Center for Signal ProcessingTampere University of TechnologyTampereFinland

Personalised recommendations