Advertisement

The Use of Image Smoothness Estimates in Speeding Up Fractal Image Compression

  • Tomas Žumbakis
  • Jonas Valantinas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

The paper presents a new attempt to speed up fractal image encoding. The range blocks and corresponding domain blocks are categorized depending on their smoothness parameter values (smoothness estimates), introduced, from the first, to characterize manifestation of high frequency components in the image. The searching of the best matched domain block is carried out between the neighbouring (or, within the same) smoothness classes. The computational complexity of the fractal image encoding process is reduced considerably. Theoretical and experimental investigations show that extremely high compression time savings are achieved for images of size 512x512.

References

  1. 1.
    Peitgen, H.-O., Jurgens, H., Saupe, D.: Chaos and Fractals. Springer, Heidelberg (1992)Google Scholar
  2. 2.
    Jacquin, A.: Image Coding Based on a Fractal Theory of Iterated Contractive Image Transformations. IEEE Transactions on Image Processing 1(1), 18–30 (1992)CrossRefGoogle Scholar
  3. 3.
    Turner, M.J., Blackledge, J.M., Andrews, P.R.: Fractal Geometry in Digital Imaging. Academic Press, Cambridge (1998)Google Scholar
  4. 4.
    Valantinas, J., Zumbakis, T.: On the Use of Shift Dynamics in Synthesizing Fractal Images. Intern. Journ. INFORMATICA 15(3), 411–424 (2004); Institute of Mathematics and Informatics, VilniuszbMATHMathSciNetGoogle Scholar
  5. 5.
    Fisher, Y.: Fractal Image Compression – Theory and Application. Springer, New York (1994)zbMATHGoogle Scholar
  6. 6.
    Wallace, G.K.: The JPEG Still Picture Compression Standard. Communications of the ACM 34(4), 30–44 (1991)CrossRefGoogle Scholar
  7. 7.
    Culik II, K., Valenta, V.: Finite Automata Based Compression of Bi-Level and Simple Color Images. In: Department of Computer Science, University of South Carolina, Columbia, S.C. 29208, U.S.A, pp. 1–14 (1998)Google Scholar
  8. 8.
    Valantinas, J., Valantinas, R.: Problem-Oriented Change of Image Dimensionality. In: Proceedings of the Third International Symposium on Image and Signal Processing and Analysis, Rome (Italy), Universita degli Studi ROMA TRE, pp. 228–232 (2003)Google Scholar
  9. 9.
    Ahmed, N., Rao, K.R.: Orthogonal Transforms for Digital Signal Processing. Springer, Heidelberg (1975)zbMATHGoogle Scholar
  10. 10.
    Saupe, D., Hamzaoui, R.: Complexity reduction methods for fractal image compression. In: Proceedings of the IMA Conference on Image Processing: Mathematical Methods and Applications, Oxford, England, pp. 211–229 (1994)Google Scholar
  11. 11.
    Wohlberg, B., de Jager, G.: A review of the Fractal Image Coding Literature. IEEE Transactions on Image Processing 8(12), 1716–1729 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Valantinas, J., Žumbakis, T.: Definition, evaluation and task-oriented application of image smoothness estimates. Information Technology and Control 1(14), 15–24 (2004); Technologija, KaunasGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tomas Žumbakis
    • 1
  • Jonas Valantinas
    • 1
  1. 1.Kaunas University of TechnologyKaunasLithuania

Personalised recommendations