Improving the Maximum-Likelihood Co-occurrence Classifier: A Study on Classification of Inhomogeneous Rock Images

  • P. Paclík
  • S. Verzakov
  • R. P. W. Duin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


An industrial rock classification system is constructed and studied. The local texture information in many image patches is extracted and classified. The decisions made at the local level are fused to form the high-level decision on the image/rock as a whole. The main difficulties of this application lay in significant variability and inhomogeneity of local textures caused by uneven rock surfaces and intrusions. Therefore, an emphasis is paid to the derivation of informative representation of local texture and to robust classification algorithms. The study focuses on the co-occurrence representation of texture comparing the two frequently used strategies, namely the approach based on Haralick features and methods utilizing directly the co-occurrence likelihoods. Apart of maximum-likelihood (ML) classifiers also an alternative method is studied considering the likelihoods to prototypes as feature of a new space. Unlike the ML methods, a classifier built in this space may leverage all training examples. It is experimentally illustrated, that in the rock classification setup the methods directly using the co-occurrence estimates outperform the feature-based techniques.


Local Binary Pattern Image Patch Local Texture Neighbor Rule Local Binary Pattern Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ohanian, P.P., Dubes, R.C.: Performance Evaluation for Four Classes of Textural Features. Pattern Recognition 25, 819–833 (1992)CrossRefGoogle Scholar
  2. 2.
    Haralick, R.M.: Statistical and Structural Approaches to Texture. Proceedings of the IEEE 67, 786–804 (1979)CrossRefGoogle Scholar
  3. 3.
    Randen, T., Husøoy, J.H.: Filtering for texture classification: A comparative study. IEEE Trans. Patt.Anal. and Mach.Int. 21, 291–310 (1999)CrossRefGoogle Scholar
  4. 4.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classification. IEEE Tranc. Sys.Man and Cybernetics 3, 610–621 (1973)CrossRefGoogle Scholar
  5. 5.
    Cohen, F.S., Fan, Z., Patel, M.A.: Classification of rotated and scaled textured images using gaussian markov random field models. IEEE Trans. Pattern Analysis and Machine Inteligence 13, 192–202 (1991)CrossRefGoogle Scholar
  6. 6.
    Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Classification of non-homogenous textures by combining classifiers. In: Proc.of IEEE Int.Conf. on Image Processing, Barcelona, Spain, September 14-17, vol. 1, pp. 981–984 (2003)Google Scholar
  7. 7.
    Vickers, A.L., Modestino, J.W.: A maximum likelihood approach to texture classification. IEEE Trans. Pattern Analysis and Machine Inteligence 4 (1982)Google Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Kyllönen, J.: Gray level cooccurrence histograms via learning vector quantization. In: Proc. 11th SCIA, Kangerlussuaq, Greenland, pp. 103–108 (1999)Google Scholar
  9. 9.
    Duin, R.P.W., de Ridder, D., Tax, D.M.J.: Experiments with object based discriminant functions; a featureless approach to pattern recognition. Pattern Recognition Letters 18, 1159–1166 (1997)CrossRefGoogle Scholar
  10. 10.
    Pekalska, E., Paclík, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity based classification. Journal of Machine Learning Research 1, 175–211 (2001); Special Issue New Perspectives on Kernel Based Learning MethodsGoogle Scholar
  11. 11.
    Paclík, P., Duin, R.P.W.: Dissimilarity-based classification of spectra: computational issues. Real Time Imaging 9, 237–244 (2003)CrossRefGoogle Scholar
  12. 12.
    Duin, R.P.W., Juszczak, P., de Ridder, D., Paclík, P., Pekalska, E., Tax, D.M.J.: PR-Tools 4.0, a Matlab toolbox for pattern recognition. Technical report, ICT Group, TU Delft, The Netherlands (2004),
  13. 13.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (1998) (ISBN 0-12-686140-4)zbMATHGoogle Scholar
  14. 14.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis and Machine Inteligence 24, 971–987 (2002)CrossRefGoogle Scholar
  15. 15.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842 (1996)CrossRefGoogle Scholar
  16. 16.
    Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans. Patt.Anal. and Mach.Int. 20, 90–94 (1998)CrossRefGoogle Scholar
  17. 17.
    Partio, M., Cramariuc, B., Gabbouj, M., Visa, A.: Rock texture retrieval using gray-level co-occurrence matrix. In: ORSIG-2002, 5th Nordic Signal Processing Symposium, On Board Hurtigruten M/S Trollfjord, Norway, October 4-7 (2002)Google Scholar
  18. 18.
    Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Rock image classification using non-homogenous textures and spectral imaging. In: WSCG proc., WSCG 2003, Plzen, Czech Republic, February 3-7 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Paclík
    • 1
  • S. Verzakov
    • 1
  • R. P. W. Duin
    • 1
  1. 1.Information and Communication Theory GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations