Observed Lower Bounds for Random 3-SAT Phase Transition Density Using Linear Programming

  • Marijn Heule
  • Hans van Maaren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)


We introduce two incomplete polynomial time algorithms to solve satisfiability problems which both use Linear Programming (LP) techniques. First, the FlipFlop LP attempts to simulate a Quadratic Program which would solve the CNF at hand. Second, the WeightedLinearAutarky LP is an extended variant of the LinearAutarky LP as defined by Kullmann [6] and iteratively updates its weights to find autarkies in a given formula. Besides solving satisfiability problems, this LP could also be used to study the existence of autark assignments in formulas. Results within the experimental domain (up to 1000 variables) show a considerably sharper lower bound for the uniform random 3-Sat phase transition density than the proved lower bound of the myopic algorithm (> 3.26) by Achlioptas [1] and even than that of the greedy algorithm (> 3.52) proposed by Kaporis [5].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achlioptas, D.: Lower Bounds for Random 3-SAT via Differential Equations. Theoretical Computer Science 265(1-2), 159–185 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boros, E., Crama, Y., Hammer, P., Saks, M.: A complexity Index for Satisfiability Problems. SIAM Journal on Computing 23(1), 45–49 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Franco, J.: Results related to threshold phenomena research in Satisfiability: lower bounds. Theoretical Computer Science 265(1-2), 147–157 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The Probabilistic Analysis of a Greedy Satisfiability Algorithm. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 574–585. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: Selecting complementary pairs of literals. Electronic Notes in Discrete Mathematics 16 (2003)Google Scholar
  6. 6.
    Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathematics 107(1-3), 99–137 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kullmann, O.: Lean clause-sets: generalizations of minimally unsatisfiable clause-sets. Discrete Applied Mathematics 130(2), 209–249 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Van Gelder, A.: Problem generator mkcnf.c contributed to the DIMACS Challenge archieveGoogle Scholar
  9. 9.
    Warners, J.P., van Maaren, H.: A two phase algorithm for solving a class of hard satisfiability problems. Oper. Res. Lett. 23(3-5), 81–88 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Warners, J., van Maaren, H.: Solving satisfiability problems using elliptic approximations. Effective branching rules. Discrete Applied Mathematics 107(1-3), 241–259 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marijn Heule
    • 1
  • Hans van Maaren
    • 1
  1. 1.Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer SciencesDelft University of Technology 

Personalised recommendations