Resolution and Pebbling Games

  • Nicola Galesi
  • Neil Thapen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)


We define a collection of Prover-Delayer games to characterise some subsystems of propositional resolution. We give some natural criteria for the games which guarantee lower bounds on the resolution width. By an adaptation of the size-width tradeoff for resolution of [10] this result also gives lower bounds on proof size.

We also use games to give upper bounds on proof size, and in particular describe a good strategy for the Prover in a certain game which yields a short refutation of the Linear Ordering principle.

Using previous ideas we devise a new algorithm to automatically generate resolution refutations. On bounded width formulas, our algorithm is as least as good as the width based algorithm of [10]. Moreover, it finds short proofs of the Linear Ordering principle when the variables respect a given order.

Finally we approach the question of proving that a formula F is hard to refute if and only if is “almost” satisfiable. We prove results in both directions when “almost satisfiable” means that it is hard to distuinguish F from a satisfiable formula using limited pebbling games.


Proof System Winning Strategy Satisfying Assignment Partial Assignment Pigeonhole Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekhnovich, M., Ben-Sasson, E., Razborov, A., Wigderson, A.: Space complexity in propositional calculus. SIAM J. Comput. 31(4), 1184–1211 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is not tractable. In: 42nd IEEE Symposium on Foundations of Computer Science, FOCS 2001, pp. 210–219 (2001)Google Scholar
  3. 3.
    Atserias, A., Dalmau, V.: A combinatorial characterization of Resolution Width. In: 18th IEEE Conference on Computational Complexity (CCC), pp. 239–247 (2003)Google Scholar
  4. 4.
    Atserias, A., Kolaitis, P., Vardi, M.: Constraint Propagation as a Proof System. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Beame, P., Karp, R.M., Pitassi, T., Saks, M.E.: On the Complexity of Unsatisfiability Proofs for Random k-CNF Formulas. SIAM J. Comput. 31(4), 1048–1075 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beame, P., Kautz, H.: A Sabharwal Understanding the power of clause learning. In: Proceedings IJCAI, pp. 1194–1201 (2003)Google Scholar
  7. 7.
    Beame, P., Pitassi, T.: Simplified and Improved Resolution Lower Bounds. In: 37th IEEE Symposium on Foundations of Computer Science, FOCS 1996, pp. 274–282 (1996)Google Scholar
  8. 8.
    Ben-Sasson, E., Galesi, N.: Space Complexity of Random Formulae in Resolution. In: 16th IEEE Annual Conference on Computational Complexity, CCC 2001, pp. 42–51 (2001)Google Scholar
  9. 9.
    Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of treelike and general Resolution. In: Electronic Colloquium on Computational Complexity (ECCC) TR00-005 (2000) To appear in CombinatoricaGoogle Scholar
  10. 10.
    Ben-Sasson, E., Wigderson, A.: Short Proofs Are Narrow—Resolution Made Simple. J. ACM 48(2), 149–168 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bonet, M.L., Galesi, N.: Optimality of Size-Width Tradeoffs for Resolution. Computational Complexity 10(4), 261–276 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Esteban, J.L., Galesi, N., Messner, J.: On the Complexity of Resolution with Bounded Conjunctions. Theoretical Computer Science 321(2-3), 347–370 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Esteban, J.L., Torán, J.: Space bounds for Resolution. Inform. and Comput. 171(1), 84–97 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Galesi, N., Thapen, N.: The Complexity of Treelike Systems over λ Local Formuale. In: Proceedings of IEEE Conference on Computational Complexity (2004)Google Scholar
  15. 15.
    Galesi, N., Thapen, N.: Resolution and Pebbling Games. ECCC Technical Report TR04-112,
  16. 16.
    Haken, A.: The Intractability of Resolution. Theoret. Comp. Sci. 39, 297–308 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Krajíček, J.: Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  18. 18.
    Krajíček, J.: On the weak pigeonhole principle. Fund. Math. 170(1-3), 123–140 (2001); J. Symbolic Logic 59(1), 73–86 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pudlak, P.: Proofs as Games. American Math. Monthly 107(6), 541–550 (2000)Google Scholar
  20. 20.
    Pudlák, P., Impagliazzo, R.: A lower bound for DLL algorithms for k-SAT. In: Conference Proceeding of Symposium on Distributed Algorithms, pp. 128–136 (2000)Google Scholar
  21. 21.
    Riis, S.: A complexity gap for tree-resolution. Computational Complexity 10(3), 179–209 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Urquhart, A.: Hard examples for Resolution. J. ACM 34(1), 209–219 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nicola Galesi
    • 1
  • Neil Thapen
    • 2
  1. 1.Dipartimento di InformaticaUniversità degli Studi di Roma “La Sapienza”RomaItaly
  2. 2.St Hilda’s CollegeUniversity of OxfordOxfordUK

Personalised recommendations