Skip to main content

Effective Preprocessing in SAT Through Variable and Clause Elimination

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3569)

Abstract

Preprocessing SAT instances can reduce their size considerably. We combine variable elimination with subsumption and self-subsuming resolution, and show that these techniques not only shrink the formula further than previous preprocessing efforts based on variable elimination, but also decrease runtime of SAT solvers substantially for typical industrial SAT problems. We discuss critical implementation details that make the reduction procedure fast enough to be practical.

Keywords

  • Unit Clause
  • Variable Elimination
  • Candidate Clause
  • Binary Clause
  • Original Clause

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11499107_5
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31679-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Subbarayan, S., Pradhan, D.: NiVER: Non increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Comm. of the ACM 5(7) (1962)

    Google Scholar 

  3. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Brafman, R.: A simplifier for propositional formulas with many binary clauses. IEEE Trans. on Systems, Man, and Cybernetics 34(v1) (2004)

    Google Scholar 

  5. Lynce, I., Marques-Silva, J.: Probing-based preprocessing techniques for propositional satisfiability. In: Proc. ICTAI 2003 (2003)

    Google Scholar 

  6. Novikov, Y.: Local search for boolean relations on the basis of unit propagation. In: Proc. of DATE 2003 (2003)

    Google Scholar 

  7. Stålmarck, G.: A system for determining propositional logic theorems by applying values and rules to triplets that are generated from a formula (1989) Swedish Patent N° 467 076

    Google Scholar 

  8. Kunz, W., Pradhan, D.: Recursive learning: An attractive alternative to the decision tree for test generation in digital circuits. In: Proc. ITC 1992 (1992)

    Google Scholar 

  9. Kühlmann, A., Paruthi, V., Krohm, F., Ganai, M.: Robust boolean reasoning for equivalence checking and functional property verification. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 21(12) (2002)

    Google Scholar 

  10. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3) (1960)

    Google Scholar 

  11. Chatalic, P., Simon, L.: ZRes: The old Davis-Putnam procedure meets ZBDDs. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  12. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  13. Boy de la Tour, T.: An optimality result for clause form translation. Journal of Symbolic Computation 14 (1992)

    Google Scholar 

  14. Jackson, P., Sheridan, D.: Clause form conversions for boolean circuits. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 183–198. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  15. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3) (1986)

    Google Scholar 

  16. Velev, M.: Efficient translation of boolean formulas to CNF in in formal verification of microprocessors. In: Proc. ASP-DAC 2004 (2004)

    Google Scholar 

  17. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Constr. Math. and Math. Logic (1968)

    Google Scholar 

  18. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables for propositional satisfiability. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, p. 296. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  19. Ostrowski, R., Grégoire, É., Mazure, B., Saïs, L.: Recovering and exploiting structural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 185. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  20. Grégoire, É., Ostrowski, R., Mazure, B., Saïs, L.: Automatic extraction of functional dependencies. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 122–132. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  21. Eén, N., Sörensson, N.: An extensible SAT solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  22. Sörensson, N.: Conflict clause simplification using subsumption resolution (paper in preparation)

    Google Scholar 

  23. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. In: Proc. BMC 2003. ENTCS, vol. 89(4) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eén, N., Biere, A. (2005). Effective Preprocessing in SAT Through Variable and Clause Elimination. In: Bacchus, F., Walsh, T. (eds) Theory and Applications of Satisfiability Testing. SAT 2005. Lecture Notes in Computer Science, vol 3569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499107_5

Download citation

  • DOI: https://doi.org/10.1007/11499107_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26276-3

  • Online ISBN: 978-3-540-31679-4

  • eBook Packages: Computer ScienceComputer Science (R0)