A New Set of Algebraic Benchmark Problems for SAT Solvers

  • Andreas Meier
  • Volker Sorge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)


We propose a new benchmark set consisting of problems generated during the construction of classification theorems for quasigroups. It extends and generalises the domain of quasigroup existence problems, to which SAT solvers have been applied successfully in the past, to a rich class of benchmarks of varying difficulty.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Peled, D. (eds.): CAV 2004. LNCS, vol. 3114. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  2. 2.
    Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity checker. In: Alur, R., Peled, D. (eds.) [1], pp. 515–518Google Scholar
  3. 3.
    Colton, S., Meier, A., Sorge, V., McCasland, R.: Automatic generation of classification theorems for finite algebras. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 400–414. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Fujita, M., Slaney, J., Bennett, F.: Automatic Generation of Some Results in Finite Algebra. In: Proc. of IJCAI–13, pp. 52–57. Morgan Kaufmann, San Francisco (1993)Google Scholar
  5. 5.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Dpll(t): Fast decision procedures. In: Alur, R., Peled, D. (eds.) [1], pp. 175–188Google Scholar
  6. 6.
    Kumar, S.R., Russel, A., Sundaram, R.: Approximating latin square extensions. Algorithmica 24, 128–138 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Laywine, C., Mullen, G.: Discrete Mathematics using Latin Squares. Wiley, Chichester (1998)zbMATHGoogle Scholar
  8. 8.
    McCune, W.W.: A davis-putnam program and its application to finite first-order model search: quasigroup existence problems. Report, Argonne Nat. Labs (1994)Google Scholar
  9. 9.
    Meier, A., Sorge, V.: Applying sat solving in classification in finite algebra. Submitted to the Journal of Automated ReasoningGoogle Scholar
  10. 10.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: Proc. of the Design Automation Conference, pp. 530–535 (2001)Google Scholar
  11. 11.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)Google Scholar
  12. 12.
    Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Zhang, H.: Specifying latin squares in propositional logic. In: Automated Reasoning and Its Applications, Essays in honor of Larry Wos. MIT Press, Cambridge (1997)Google Scholar
  14. 14.
    Zhang, H., Bonacina, M., Hsiang, J.: PSATO: a distributed propositional prover and its application to quasigroup problems. J. of Symb. Computation 21, 543–560 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhang, H., Hsiang, J.: Solving Open Quasigroup Problems by Propositional Reasoning. In: Proc. of International Computer Symposium (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Meier
    • 1
  • Volker Sorge
    • 2
  1. 1.DFKI GmbHSaarbrückenGermany
  2. 2.School of Computer ScienceUniversity of BirminghamUK

Personalised recommendations