Quantifier Trees for QBFs

  • Marco Benedetti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)


We present a method—called quantifier tree reconstruction—that allows to efficiently recover ex-post a portion of the internal structure of QBF instances which was hidden as a consequence of the cast to prenex normal form. Means to profit from a quantifier tree are presented for all the main families of QBF solvers. Experiments on QBFLIB instances are also reported.


Normal Form Conjunctive Normal Form Boolean Formula Tree Reconstruction Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedetti, M.: Quantifier Trees for QBFs. Tech.Rep. 05-04-08, ITC-irst (2005)Google Scholar
  2. 2.
    Benedetti, M.: sKizzo’s web site (2004),
  3. 3.
    Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 238–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Büning, H.K., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  6. 6.
    Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: Proc. of the tenth conference on Artificial Intelligence/Innovative applications of artificial intelligence. AAAI, Menlo Park (1998)Google Scholar
  7. 7.
    GhasemZadeh, M., Klotz, V., Meinel, C.: ZQSAT: A QSAT Solver based on Zero-suppressed Binary Decision Diagrams (2004), available at
  8. 8.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: an Efficient QBF Solver. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kleine-Buning, H., Karpinski, M., Flogel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Letz, R.: Advances in Decision Procedures for Quantified Boolean Formulas. In: Proceedings of the First International Workshop on Quantified Boolean Formulae (QBF 2001), pp. 55–64 (2001)Google Scholar
  11. 11.
    Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 6, pp. 335–367. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  12. 12.
    Pan, G., Vardi, M.Y.: Symbolic Decision Procedures for QBF. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Thiffault, C., Bacchus, F., Walsh, T.: Solving Non-clausal Formulas with DPLL search. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Zhang, L., Malik, S.: Towards Symmetric Treatment of Conflicts And Satisfaction in Quantified Boolean Satisfiability Solver. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 200. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marco Benedetti
    • 1
  1. 1.Istituto per la Ricerca Scientifica e Tecnologica (IRST)Povo, TrentoItaly

Personalised recommendations