Advertisement

A Symbolic Search Based Approach for Quantified Boolean Formulas

  • Gilles Audemard
  • Lakhdar Saïs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)

Abstract

Solving Quantified Boolean Formulas (QBF) has become an important and attractive research area, since several problem classes might be formulated efficiently as QBF instances (e.g. planning, non monotonic reasoning, two-player games, model checking, etc). Many QBF solvers has been proposed, most of them perform decision tree search using the DPLL-like techniques. To set free the variable ordering heuristics that are traditionally constrained by the static order of the QBF quantifiers, a new symbolic search based approach (QBdd(Sat)) is proposed. It makes an original use of binary decision diagram to represent the set of models (or prime implicants) of the boolean formula found using search-based satisfiability solver. Our approach is enhanced with two interesting extensions. First, powerful reduction operators are introduced in order to dynamically reduce the BDD size and to answer the validity of the QBF. Second, useful cuts are achieved on the search tree thanks to the nogoods generated from the BDD representation. Using DPLL-likes (resp. local search) techniques, our approach gives rise to a complete QBdd(DPLL) (resp. incomplete QBdd(LS)) solver. Our preliminary experimental results show that on some classes of instances from the QBF evaluation, QBdd(DPLL) and QBdd(LS) are competitive with state-of-the-art QBF solvers.

Keywords

Quantified boolean formula Binary decision diagram Satisfiability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, S.: Binary decision diagrams. IEEE Transactions on Computers 27, 509–516 (1978)zbMATHCrossRefGoogle Scholar
  2. 2.
    Audemard, G., Sais, L.: Sat based bdd solver for quantified boolean formulas. In: Proceedings of the 16th IEEE international conference on Tools with Artificial Intelligence, pp. 82–89 (2004)Google Scholar
  3. 3.
    Le Berre, D., Simon, L., Tachella, A.: Challenges in the qbf arena: the SAT 2003 evaluation of qbf solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 452–467. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–692Google Scholar
  6. 6.
    Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI 1998), Madison (Wisconsin - USA), pp. 262–267 (1998)Google Scholar
  7. 7.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3–SAT formulae. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), August 4–10 (2001)Google Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gent, I.P., Hoos, H.H., Rowley, A.G.D., Smyth, K.: Using stochastic local search to solve quantified boolean formulae. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 348–362. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE: A system for deciding Quantified Boolean Formulas Satisfiability. In: Proceedings of the International Joint Conference on Automated Reasoning (IJCAR 2001), Siena, Italy (June 2001)Google Scholar
  12. 12.
    Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Marquis, S.C., Fargier, H., Lang, J., Le Berre, D., Marquis, P.: Function problems for quantified boolean formulas. Technical report, CRIL - France (2003)Google Scholar
  14. 14.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of 38th Design Automation Conference, DAC 2001 (2001)Google Scholar
  15. 15.
    Ranjan, D., Tang, D., Niklas, S.M.: A Comparative Study of 2QBF Algorithms. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 292–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Rintanen, J.: Partial implicit unfolding in the Davis-Putnam procedure for Quantified Boolean Formulae. In: Proceedings of the First International Conference on Quantified Boolean Formulae (QBF 2001), pp. 84–93 (2001)Google Scholar
  17. 17.
    Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI 1992), pp. 459–465 (1992)Google Scholar
  18. 18.
    Zhang, L., Malik, S.: Towards a symetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gilles Audemard
    • 1
  • Lakhdar Saïs
    • 1
  1. 1.CRIL CNRS – Université d’ArtoisLens CedexFrance

Personalised recommendations