Simulating Cutting Plane Proofs with Restricted Degree of Falsity by Resolution

  • Edward A. Hirsch
  • Sergey I. Nikolenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)


Goerdt [Goe91] considered a weakened version of the Cutting Plane proof system with a restriction on the degree of falsity of intermediate inequalities. (The degree of falsity of an inequality written in the form ∑ a i x i + ∑ b i (1 − x i ) ≥ A, a i ,b i  ≥ 0 is its constant term A.) He proved a superpolynomial lower bound on the proof length of Tseitin-Urquhart tautologies when the degree of falsity is bounded by \(\frac{n}{log^2 n+1}\) (n is the number of variables).

In this paper we show that if the degree of falsity of a Cutting Planes proof Π is bounded by d(n) ≤ n/2, this proof can be easily transformed into a resolution proof of length at most |∏| · (d(n) n − 1)64 d(n). Therefore, an exponential bound on the proof length of Tseitin-Urquhart tautologies in this system for d(n) ≤ cn for an appropriate constant c > 0 follows immediately from Urquhart’s lower bound for resolution proofs [Urq87].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGIP01]
    Buss, S., Grigoriev, D., Impagliazzo, R., Pitassi, T.: Linear gaps between degrees for the polynomial calculus modulo distinct primes. JCSS 62, 267–289 (2001)zbMATHMathSciNetGoogle Scholar
  2. [BSW01]
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow – resolution made simple. JACM 48(2) (2001)Google Scholar
  3. [CR79]
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [Das02]
    Dash, S.: Exponential lower bounds on the lengths of some classes of branch-and-cut proofs. IBM Research Report RC22575 (September 2002)Google Scholar
  5. [GHP02]
    Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semialgebraic proofs. Moscow Mathematical Journal 2(4), 647–679 (2002)zbMATHMathSciNetGoogle Scholar
  6. [Goe91]
    Goerdt, A.: The Cutting Plane proof system with bounded degree of falsity. In: Kleine Büning, H., Jäger, G., Börger, E., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 119–133. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  7. [Hak85]
    Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [LS91]
    Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization 1(2), 166–190 (1991)zbMATHCrossRefGoogle Scholar
  9. [Pud97]
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 62(3), 981–998 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Raz85]
    Razborov, A.A.: Lower bounds on the monotone complexity of some boolean functions. Doklady Akad. Nauk SSSR 282, 1033–1037 (1985)MathSciNetGoogle Scholar
  11. [Rob68]
    Robinson, J.A.: The generalized resolution principle. Machine Intelligence 3, 77–94 (1968)zbMATHGoogle Scholar
  12. [Tse68]
    Tseitin, G.S.: On the complexity of derivation in the propositional calculus. Zapiski nauchnykh seminarov LOMI 8, 234–259 (1968); English translation of this volume: Consultants Bureau, N.Y., pp. 115–125 (1970)zbMATHGoogle Scholar
  13. [Urq87]
    Urquhart, A.: Hard examples for resolution. JACM 34(1), 209–219 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Edward A. Hirsch
    • 1
  • Sergey I. Nikolenko
    • 2
  1. 1.St.Petersburg Department of Steklov Institute of MathematicsSt.PetersburgRussia
  2. 2.St.Petersburg State University 

Personalised recommendations