Skip to main content

Mega Software Engineering

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3547)

Abstract

In various fields of computer science, rapidly growing hardware power, such as high-speed network, high-performance CPU, huge disk capacity, and large memory space, has been fruitfully harnessed. Examples of such usage are large scale data and web mining, grid computing, and multimedia environments. We propose that such rich hardware can also catapult software engineering to the next level. Huge amounts of software engineering data can be systematically collected and organized from tens of thousands of projects inside organizations, or from outside an organization through the Internet. The collected data can be analyzed extensively to extract and correlate multi-project knowledge for improving organization-wide productivity and quality. We call such an approach for software engineering Mega Software Engineering. In this paper, we propose the concept of Mega Software Engineering, and demonstrate some novel data analysis characteristic of Mega Software Engineering. We describe a framework for enabling Mega Software Engineering.

Keywords

  • Software Engineering
  • Software Engineer
  • Software Project
  • Collaborative Filter
  • Global Software Development

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Melian, C., Ammirati, C., Garg, P.K., Sevon, G.: Collaboration and Openness in Large Corporate Software Devlopment. Presented at the European Academy of Management Conferenec, Stockholm, Sweden (2002), Available from http://www.zeesource.net/kc.shtml

  2. Dinkelacker, J., Garg, P., Nelson, D., Miller, R.: Progressive Open Source. In: ICSE, Orlando, Florida (2002)

    Google Scholar 

  3. ZeeSource (SourceShare), http://www.zeesource.net

  4. Halloran, T.J., Scherlis, W.L., Erenkrantz, J.R.: Beyond Code: Content Management and the Open Source Development Portal. In: 3rd WS Open Source SE, Portland, OR, USA (2003)

    Google Scholar 

  5. Kawaguchi, S., Garg, P.K., Matsushita, M., Inoue, K.: Automatic Categorization for Evolvable Software Archive. In: Int. WS Principles of Software Evolution, Helsinki, Finland, pp. 195–200 (2003)

    Google Scholar 

  6. Yamamoto, T., Matsusita, M., Kamiya, T., Inoue, K.: Measuring Similarity of Large Software Systems Based on Source Code Correspondence. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547, pp. 530–544. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  7. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multi-Linguistic Token-based Code Clone Detection System for Large Scale Source Code. IEEE TSE 28, 654–670 (2002)

    Google Scholar 

  8. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to latent semantic analysis. Discourse Processes 25, 259–284 (1998)

    CrossRef  Google Scholar 

  9. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering Recommendation Algorithms. In: Int. World Wide Web Conf. (WWW10), Hong Kong, pp. 285–295 (2001)

    Google Scholar 

  10. Ohsugi, N., Monden, A., Morisaki, S.: Collaborative Filtering Approach for Software Function Discovery. In: Int. Symp. Empirical SE (ISESE), Nara, Japan, vol. 2, pp. 45–46 (2002)

    Google Scholar 

  11. Project Management Institute, A Guide to the Project Management Body of Knowledge 2000 Edition (2000)

    Google Scholar 

  12. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto, S.: Component Rank: Relative Significance Rank for Software Component Search. In: ICSE, Portland, OR, pp. 14–24 (2003)

    Google Scholar 

  13. Gnu: (Gnats Project), http://www.gnu.org/software/gnats

  14. Herbsleb, J.D., Moitra, D.: Global Software Development. IEEE Software 18, 16–20 (2001)

    CrossRef  Google Scholar 

  15. Herbsleb, J.D., Moitra, D.: An Empirical Study of Speed and Communication in Globally Distributed Software Development. IEEE TSE 29, 481–494 (2003)

    Google Scholar 

  16. Mockus, A., Herbsleb, J.D.: Expertise Brower: A Quantitative Approach to Identifying Expertise. In: ICSE, Orlando, FL, pp. 503–512 (2002)

    Google Scholar 

  17. Cubranic, D., Holmes, R., Ying, A., Murphy, G.C.: Tool for Light-weight Knowledge Sharing in Open-source Software Development. In: 3rd WS Open Source SE, Portland, OR, USA, pp. 25–30 (2003)

    Google Scholar 

  18. Ye, Y., Fischer, G.: Supporting Reuse by Delivering Task-Relevant and Personalized Information. In: ICSE, Orlando, FL, pp. 513–523 (2002)

    Google Scholar 

  19. German, D., Mockus, A.: Automating the Measurement of Open Source Projects. In: 3rd WS Open Source SE, Portland, OR, pp. 63–68 (2003)

    Google Scholar 

  20. Draheim, D., Pekacki, L.: Process-Centric Analytical Processing of Version Control Data. In: Int. WS Principles of Software Evolution, Helsinki, Finland, pp. 131–136 (2003)

    Google Scholar 

  21. Mockus, A., Votta, L.G.: Identifying Reasons for Software Changes Using Historic Database. In: ICSM, San Jose, CA, pp. 120–130 (2000)

    Google Scholar 

  22. Basili, V.R.: Goal Question Metrics Paradigm. In: Marciniak, J. (ed.) Encyclopedia of Software Engineering, pp. 528–532. John Wiley and Sons, Chichester (1994)

    Google Scholar 

  23. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley, Reading (1996)

    Google Scholar 

  24. Basili, V.R., Caldiera, G.: Improve Software Quality by Reusing Knowledge and Experience. Sloan Management Review, 55–64 (Fall 1995)

    Google Scholar 

  25. Neto, M.G.M., Seaman, C.B., Basili, V., Kim, Y.: A Prototype Experience Management System for a Software Consulting Organization. In: SEKE 2001, Buenos Aires, Argentina (2001)

    Google Scholar 

  26. Conradi, R., Dingsoyr, T.: Software Experience Bases: A Consolidated Evaluation and Status Report. In: Bomarius, F., Oivo, M. (eds.) PROFES 2000. LNCS, vol. 1840, pp. 391–406. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inoue, K., Garg, P.K., Iida, H., Matsumoto, K., Torii, K. (2005). Mega Software Engineering. In: Bomarius, F., Komi-Sirviö, S. (eds) Product Focused Software Process Improvement. PROFES 2005. Lecture Notes in Computer Science, vol 3547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11497455_32

Download citation

  • DOI: https://doi.org/10.1007/11497455_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26200-8

  • Online ISBN: 978-3-540-31640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics