Skip to main content

Semidefinite Bounds for the Stability Number of a Graph via Sums of Squares of Polynomials

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3509))

Abstract

Lovász and Schrijver [9] have constructed semidefinite relaxations for the stable set polytope of a graph G = (V,E) by a sequence of lift-and-project operations; their procedure finds the stable set polytope in at most α(G) steps, where α(G) is the stability number of G. Two other hierarchies of semidefinite bounds for the stability number have been proposed by Lasserre [4],[5] and by de Klerk and Pasechnik [3], which are based on relaxing nonnegativity of a polynomial by requiring the existence of a sum of squares decomposition. The hierarchy of Lasserre is known to converge in α(G) steps as it refines the hierarchy of Lovász and Schrijver, and de Klerk and Pasechnik conjecture that their hierarchy also finds the stability number after α(G) steps. We prove this conjecture for graphs with stability number at most 8 and we show that the hierarchy of Lasserre refines the hierarchy of de Klerk and Pasechnik.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. Journal of Global Optimization 24, 163–185 (2002)

    Article  MATH  Google Scholar 

  2. Delsarte, P.: An Algebraic Approach to the Association Schemes of Coding Theory. [Philips Research Reports Supplements, No. 10] Philips Research Laboratories, Eindhoven (1973)

    Google Scholar 

  3. De Klerk, E., Pasechnik, D.V.: Approximating the stability number of a graph via copositive programming. SIAM Journal on Optimization 12, 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0 − 1 programs. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0 − 1 programming. Mathematics of Operations Research 28, 470–496 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Laurent, M.: Strengthened Semidefinite Bounds for Codes (2005) Preprint. Available at, http://www.cwi.nl/~monique

  8. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1–7 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0 − 1 optimization. SIAM Journal on Optimization 1, 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. McEliece, R.J., Rodemich, E.R., Rumsey, H.C.: The Lovász’ bound and some generalizations. Journal of Combinatorics, Information & System Sciences 3, 134–152 (1978)

    MATH  MathSciNet  Google Scholar 

  11. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Túran. Canadian J. Math. 17, 533–540 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology (2000)

    Google Scholar 

  13. Pólya, G.: Collected Papers, vol. 2, pp. 309–313. MIT Press, Cambridge (1974)

    Google Scholar 

  14. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. Preprint. Available at, http://www.math.uiuc.edu/~reznick/

  15. Reznick, B.: Sums of even powers of real linear forms. Memoirs of the American Mathematical Society 463 (1992)

    Google Scholar 

  16. Schrijver, A.: A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inform. Theory 25, 425–429 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schrijver, A.: New code upper bounds from the Terwiliger algebra (2004). Preprint. Available at http://www.cwi.nl/~lex

  18. Schweighofer, M.: Optimization of polynomials on compact semialgebraic sets. SIAM Journal on Optimization (to appear), Available at http://www.math.uni-konstanz.de/~schweigh/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gvozdenović, N., Laurent, M. (2005). Semidefinite Bounds for the Stability Number of a Graph via Sums of Squares of Polynomials. In: Jünger, M., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2005. Lecture Notes in Computer Science, vol 3509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496915_11

Download citation

  • DOI: https://doi.org/10.1007/11496915_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26199-5

  • Online ISBN: 978-3-540-32102-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics