Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

International Conference on Applied Cryptography and Network Security

ACNS 2005: Applied Cryptography and Network Security pp 164–175Cite as

  1. Home
  2. Applied Cryptography and Network Security
  3. Conference paper
Rainbow, a New Multivariable Polynomial Signature Scheme

Rainbow, a New Multivariable Polynomial Signature Scheme

  • Jintai Ding19 &
  • Dieter Schmidt20 
  • Conference paper
  • 4225 Accesses

  • 220 Citations

  • 10 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3531)

Abstract

Balanced Oil and Vinegar signature schemes and the unbalanced Oil and Vinegar signature schemes are public key signature schemes based on multivariable polynomials. In this paper, we suggest a new signature scheme, which is a generalization of the Oil-Vinegar construction to improve the efficiency of the unbalanced Oil and Vinegar signature scheme. The basic idea can be described as a construction of multi-layer Oil-Vinegar construction and its generalization. We call our system a Rainbow signature scheme. We propose and implement a practical scheme, which works better than Sflash\(^{v_2}\), in particular, in terms of signature generating time.

Keywords

  • public-key
  • multivariable
  • quadratic polynomials
  • Oil and Vinegar

Download conference paper PDF

References

  1. Akkar, M.-L., Courtois, N.T., Duteuil, R., Goubin, L.: A fast and secure implementation of Sflash. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  3. Coppersmith, D., Stern, J., Vaudenay, S.: The security of the birational permutation signature schemes. J. Cryptology 10(3), 207–221 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Dickson, L.E.: Definite forms in a finite field. Trans. Amer. Math. Soc. 10, 109–122 (1909)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Ding, J., Yin, Z.: Cryptanalysis of TTS and Tame–like signature schemes. In: Third International Workshop on Applied Public Key Infrastructures. Springer, Heidelberg (2004)

    Google Scholar 

  6. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)

    Google Scholar 

  7. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)

    Google Scholar 

  8. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature verification and message encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    Google Scholar 

  9. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  10. Patarin, J.: Hidden field equations (HFE) and isomorphism of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  11. Patarin, J., Courtois, N., Goubin, L.: Flash, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  12. Patarin, J., Goubin, L., Courtois, N.: C∗ − + and HM: variations around two schemes of T. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  13. Shamir, A.: Efficient signature schemes based on birational permutations. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)

    Google Scholar 

  14. Wang, L.-C., Hu, Y.-H., Lai, F., Chou, C.-Y., Yang, B.-Y.: Tractable rational map signature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  15. Wolf, C., Braeken, A., Preneel, B.: Efficient cryptanalysis of RSE(2)PKC and RSSE(2)PKC, http://eprint.iacr.org/2004/237

  16. Yang, B., Chen, J.: A more secure and efficacious TTS signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. B. Yang and J. Chen, vol. 2971. Springer, Heidelberg (2004), http://eprint.iacr.org/2003/160

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA

    Jintai Ding

  2. Department of Electrical & Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA

    Dieter Schmidt

Authors
  1. Jintai Ding
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Dieter Schmidt
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. AT&T Labs – Research,  

    John Ioannidis

  2. Computer Science Department, Columbia University,  

    Angelos Keromytis

  3. Computer Science Department, Google Inc. and Columbia University, 1214 Amsterdam Avenue, 10027, New York, NY, USA

    Moti Yung

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, J., Schmidt, D. (2005). Rainbow, a New Multivariable Polynomial Signature Scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds) Applied Cryptography and Network Security. ACNS 2005. Lecture Notes in Computer Science, vol 3531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496137_12

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11496137_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26223-7

  • Online ISBN: 978-3-540-31542-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.92.114

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.