Skip to main content

Modeling Synaptic Transmission and Quantifying Information Transfer in the Granular Layer of the Cerebellum

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

Neurons communicate through spikes; their arrangement in different sequences generates the neural code. Spikes are transmitted between neurons via synapses; the mechanism underlying synaptic transmission involves numerous processes including neurotransmitter release and diffusion, postsynaptic receptor activation, and intrinsic electroresponsiveness. Based on available experimental data and theoretical considerations, we have developed a realistic model predicting the dynamics of neurotransmission at the mossy fiber – granule cell synapse of the cerebellum. The model permits systematic investigation of the multiple mechanisms regulating synaptic transmission and provides predictions on the role of the numerous factors driving synaptic plasticity. The model is also employed to quantify information transfer at the mossy fiber – granule cell synaptic relay. This work was funded in part by the EU SpikeForce project (IST-2001-35271 www.spikeforce.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rieke, F., Warland, D., Steveninck, R.R., Bialek, W.: Spikes - Exploring the neural code. MIT Press, Cambridge (1997)

    Google Scholar 

  2. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  3. O’Donovan, M.J., Rinzel, J.: Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends Neurosci. 20(10), 431–433 (1997)

    Article  Google Scholar 

  4. Buonomano, D.V.: Decoding temporal information: A model based on short-term synaptic plasticity. J. Neurosci. 20(23), 1129–1141 (2000)

    Google Scholar 

  5. Shannon, C.E.: A mathematical theory of communication. Bell System Technical J. 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  6. Panzeri, S., Schultz, S.R., Treves, A., Rolls, E.T.: Correlations and the encoding of information in the nervous system. Proc. Royal Soc. London B: Biol. Sci. 266, 1001–1012 (1999)

    Article  Google Scholar 

  7. Bezzi, M., Diamond, M., Treves, A.: Redundancy and synergy arising from correlations in large ensembles. J. Comput. Neurosci. 12, 165–174 (2002)

    Article  Google Scholar 

  8. Marr, D.: A theory of cerebellar cortex. J. Physiol. 202(2), 437–470 (1969)

    Google Scholar 

  9. Albus, J.S.: A theory of cerebellar function. Math. Biosc. 10, 25–61 (1971)

    Article  Google Scholar 

  10. Braitenberg, V.: Is the cerebellar cortex a biological clock in the millisecond range?. Prog. Brain Res. 25, 334–346 (1967)

    Article  Google Scholar 

  11. Medina, J.F., Garcia, K.S., Nores, W.L., Taylor, N.M., Mauk, M.D.: Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20(14), 5516–5525 (2000)

    Google Scholar 

  12. Mitchell, S.J., Silver, R.A.: Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38(3), 433–445 (2003)

    Article  Google Scholar 

  13. Sola, E., Prestori, F., Rossi, P., Taglietti, V., D’Angelo, E.: Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J. Physiol. 557, 843–861 (2004)

    Article  Google Scholar 

  14. Chadderton, P., Margrie, T.W., Häusser, M.: Integration of quanta in cerebellar granule cells during sensory processing. Nature 428(6985), 856–860 (2004)

    Article  Google Scholar 

  15. Rossi, P., Sola, E., Taglietti, V., Borchardt, T., Steigerwald, F., Utvik, J.K., Ottersen, O.P., Köhr, G., D’Angelo, E.: NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse. J. Neurosci. 22(22), 9687–9697 (2002)

    Google Scholar 

  16. DiGregorio, D.A., Nusser, Z., Silver, R.A.: Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35(3), 521–533 (2002)

    Article  Google Scholar 

  17. Cathala, L., Brickley, S., Cull-Candy, S., Farrant, M.: Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J. Neurosci. 23(14), 6074–6085 (2003)

    Google Scholar 

  18. D’Angelo, E., De Filippi, G., Rossi, P., Taglietti, V.: Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. 484, 397–413 (1995)

    Google Scholar 

  19. D’Angelo, E., Rossi, P., Armano, S., Taglietti, V.: Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J. Neurophysiol. 81(1), 277–87 (1999)

    Google Scholar 

  20. D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., Fontana, A., Naldi, G.: Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J. Neurosci. 21(3), 759–770 (2001)

    Google Scholar 

  21. Silver, R.A., Cull-Candy, S.G., Takahashi, T.: Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. 494, 231–250 (1996)

    Google Scholar 

  22. Hines, M.L., Carnevale, N.T.: NEURON: a tool for neuroscientists. Neuroscientist 7(2), 123–135 (2001)

    Article  Google Scholar 

  23. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1(3), 195–230 (1994)

    Article  Google Scholar 

  24. Barbour, B.: An evaluation of synapse independence. J. Neurosci. 21(20), 7969–7984 (2001)

    Google Scholar 

  25. Tsodyks, M.V., Markram, H.: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Nat. Acad. Sci. USA 94(2), 719–23 (1997)

    Google Scholar 

  26. Neher, E., Sakaba, T.: Estimating transmitter release rates from postsynaptic current fluctuations. J. Neurosci. 21(24), 9638–9654 (2001)

    Google Scholar 

  27. Saftenku, E.: Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus. J. Theor. Biol., (2005) (in press)

    Google Scholar 

  28. Rosenmund, C., Feltz, A., Westbrook, G.L.: Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15(4), 2788–2795 (1995)

    Google Scholar 

  29. Bezzi, M., Nieus, T., Arleo, A., D’Angelo, E., Coenen, O.J.M.: Information transfer at the mossy fiber-granule cell synapse of the cerebellum. Soc. Neurosci. Abs. 827.5 (2004)

    Google Scholar 

  30. Philipona, D., Coenen, O.J.M.: Model of granular layer encoding in the cerebellum. Neurocomputing 58-60, 575–580 (2003)

    Article  Google Scholar 

  31. Boucheny, C., Carrillo, R.R., Ros, E., Coenen, O.J.M.D.: Real-time spiking neural network: an adaptive cerebellar model. In: Proc. 8th Int. Work-Conf Artif Neural Net. LNCS, Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Angelo, E., Nieus, T., Bezzi, M., Arleo, A., Coenen, O.J.M.D. (2005). Modeling Synaptic Transmission and Quantifying Information Transfer in the Granular Layer of the Cerebellum. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_14

Download citation

  • DOI: https://doi.org/10.1007/11494669_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics