Abstract
Neurons communicate through spikes; their arrangement in different sequences generates the neural code. Spikes are transmitted between neurons via synapses; the mechanism underlying synaptic transmission involves numerous processes including neurotransmitter release and diffusion, postsynaptic receptor activation, and intrinsic electroresponsiveness. Based on available experimental data and theoretical considerations, we have developed a realistic model predicting the dynamics of neurotransmission at the mossy fiber – granule cell synapse of the cerebellum. The model permits systematic investigation of the multiple mechanisms regulating synaptic transmission and provides predictions on the role of the numerous factors driving synaptic plasticity. The model is also employed to quantify information transfer at the mossy fiber – granule cell synaptic relay. This work was funded in part by the EU SpikeForce project (IST-2001-35271 www.spikeforce.org).
Keywords
- NMDA Receptor
- Mutual Information
- Granule Cell
- Synaptic Transmission
- AMPA Receptor
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Rieke, F., Warland, D., Steveninck, R.R., Bialek, W.: Spikes - Exploring the neural code. MIT Press, Cambridge (1997)
Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)
O’Donovan, M.J., Rinzel, J.: Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends Neurosci. 20(10), 431–433 (1997)
Buonomano, D.V.: Decoding temporal information: A model based on short-term synaptic plasticity. J. Neurosci. 20(23), 1129–1141 (2000)
Shannon, C.E.: A mathematical theory of communication. Bell System Technical J. 27, 379–423 (1948)
Panzeri, S., Schultz, S.R., Treves, A., Rolls, E.T.: Correlations and the encoding of information in the nervous system. Proc. Royal Soc. London B: Biol. Sci. 266, 1001–1012 (1999)
Bezzi, M., Diamond, M., Treves, A.: Redundancy and synergy arising from correlations in large ensembles. J. Comput. Neurosci. 12, 165–174 (2002)
Marr, D.: A theory of cerebellar cortex. J. Physiol. 202(2), 437–470 (1969)
Albus, J.S.: A theory of cerebellar function. Math. Biosc. 10, 25–61 (1971)
Braitenberg, V.: Is the cerebellar cortex a biological clock in the millisecond range?. Prog. Brain Res. 25, 334–346 (1967)
Medina, J.F., Garcia, K.S., Nores, W.L., Taylor, N.M., Mauk, M.D.: Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20(14), 5516–5525 (2000)
Mitchell, S.J., Silver, R.A.: Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38(3), 433–445 (2003)
Sola, E., Prestori, F., Rossi, P., Taglietti, V., D’Angelo, E.: Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J. Physiol. 557, 843–861 (2004)
Chadderton, P., Margrie, T.W., Häusser, M.: Integration of quanta in cerebellar granule cells during sensory processing. Nature 428(6985), 856–860 (2004)
Rossi, P., Sola, E., Taglietti, V., Borchardt, T., Steigerwald, F., Utvik, J.K., Ottersen, O.P., Köhr, G., D’Angelo, E.: NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse. J. Neurosci. 22(22), 9687–9697 (2002)
DiGregorio, D.A., Nusser, Z., Silver, R.A.: Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35(3), 521–533 (2002)
Cathala, L., Brickley, S., Cull-Candy, S., Farrant, M.: Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J. Neurosci. 23(14), 6074–6085 (2003)
D’Angelo, E., De Filippi, G., Rossi, P., Taglietti, V.: Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. 484, 397–413 (1995)
D’Angelo, E., Rossi, P., Armano, S., Taglietti, V.: Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J. Neurophysiol. 81(1), 277–87 (1999)
D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., Fontana, A., Naldi, G.: Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J. Neurosci. 21(3), 759–770 (2001)
Silver, R.A., Cull-Candy, S.G., Takahashi, T.: Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. 494, 231–250 (1996)
Hines, M.L., Carnevale, N.T.: NEURON: a tool for neuroscientists. Neuroscientist 7(2), 123–135 (2001)
Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1(3), 195–230 (1994)
Barbour, B.: An evaluation of synapse independence. J. Neurosci. 21(20), 7969–7984 (2001)
Tsodyks, M.V., Markram, H.: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Nat. Acad. Sci. USA 94(2), 719–23 (1997)
Neher, E., Sakaba, T.: Estimating transmitter release rates from postsynaptic current fluctuations. J. Neurosci. 21(24), 9638–9654 (2001)
Saftenku, E.: Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus. J. Theor. Biol., (2005) (in press)
Rosenmund, C., Feltz, A., Westbrook, G.L.: Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15(4), 2788–2795 (1995)
Bezzi, M., Nieus, T., Arleo, A., D’Angelo, E., Coenen, O.J.M.: Information transfer at the mossy fiber-granule cell synapse of the cerebellum. Soc. Neurosci. Abs. 827.5 (2004)
Philipona, D., Coenen, O.J.M.: Model of granular layer encoding in the cerebellum. Neurocomputing 58-60, 575–580 (2003)
Boucheny, C., Carrillo, R.R., Ros, E., Coenen, O.J.M.D.: Real-time spiking neural network: an adaptive cerebellar model. In: Proc. 8th Int. Work-Conf Artif Neural Net. LNCS, Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
D’Angelo, E., Nieus, T., Bezzi, M., Arleo, A., Coenen, O.J.M.D. (2005). Modeling Synaptic Transmission and Quantifying Information Transfer in the Granular Layer of the Cerebellum. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_14
Download citation
DOI: https://doi.org/10.1007/11494669_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)