Skip to main content

Nonlinear Robust Identification with ε – GA: FPS Under Several Norms Simultaneously

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3512)


In nonlinear robust identification context, a process model is represented by a nominal model and possible deviations. With parametric models this process model can be expressed as the so-called Feasible Parameter Set (FPS), which derives from the minimization of identification error specific norms. In this work, several norms are used simultaneously to obtain the FPS. This fact improves the model quality but, as counterpart, it increases the optimization problem complexity resulting in a multimodal problem with an infinite number of minima with the same value which constitutes FPS contour. A special Evolutionary Algorithm (ε– GA) has been developed to find this contour. Finally, an application to a thermal process identification is presented.


  • Multiobjective Optimization
  • Optimization Problem Complexity
  • Multimodal Problem
  • IFAC Symposium
  • Transfer Function Estimation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11494669_122
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32106-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coello, C., Veldhuizen, D., Lamont, G.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  2. Garulli, A., Reinelt, W.: Model error modeling in set membership identification. In: Proc. of the System Identification Symposium (2000)

    Google Scholar 

  3. Goodwin, G., Braslavsky, J., Seron, M.: Non-stationary stochastic embedding for transfer function estimation. In: Proc. of the 14th IFAC World Congress (1999)

    Google Scholar 

  4. Keesman, K.J.: Membership-set estimation using random scanning and principal component analysis. Mathematics and Computers in Simulation 32, 535–544 (1990)

    CrossRef  MathSciNet  Google Scholar 

  5. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary computation 10(3) (2002)

    Google Scholar 

  6. Milanese, M., Vicino, A.: Optimal Estimation theory for Dynamic Systems with Set Membership Uncertainty: An Overview. Automatica 27(6), 997–1009 (1991)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Norton, J., Veres, S.: Identification of nonlinear state-space models by deterministic search. In: Proc. of the IFAC Symposium on Identification and system parameter estimation, vol. 1, pp. 363–368 (1991)

    Google Scholar 

  8. Reinelt, W., Garulli, A., Ljung, L.: Comparing different approaches to model error modelling in robust identification. Automatica 38(5), 787–803 (2002)

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. Walter, E., Kieffer, M.: Interval analysis for guaranteed nonlinear parameter estimation. In: Proc. of the 13th IFAC Symposium on System Identification (2003)

    Google Scholar 

  10. Walter, E., Piet-Lahanier, H.: Estimation of parameter bounds from bounded-error data: A survey. Mathematics and computers in Simulation 32, 449–468 (1990)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrero, J.M., Blasco, X., Martínez, M., Ramos, C. (2005). Nonlinear Robust Identification with ε – GA: FPS Under Several Norms Simultaneously. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)