Membrane Computing — Current Results and Future Problems

  • Francesco Bernardini
  • Marian Gheorghe
  • Natalio Krasnogor
  • German Terrazas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)


In the last decade and especially after Adleman’s experiment [1] a number of computational paradigms, inspired or gleaned from biochemical phenomena, are becoming of growing interest building a wealth of models, called generically Molecular Computing. New advances in, on the one hand, molecular and theoretical biology, and on the other hand, mathematical and computational sciences promise to make it possible in the near future to have accurate systemic models of complex biological phenomena. Recent advances in cellular Biology led to new models, hierarchically organised, defining a new emergent research area called Cellular Computing.


Quorum Sense Future Problem Sentential Form Physical Science Research Council Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: The Molecular Biology of The Cell, 4th edn. Garland Publ. Inc., London (2002)Google Scholar
  3. 3.
    Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P-systems and Cell Division in Population P-Systems. In: [17], pp. 74–91 (2004)Google Scholar
  4. 4.
    Bernardini, F., Gheorghe, M.: Population P-Systems. Journal of Universal Computer Science 10, 509–539 (2004)MathSciNetGoogle Scholar
  5. 5.
    Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P-Systems: Universality Results. Soft Computing (2005) (to appear)Google Scholar
  6. 6.
    Busby, S., de Lorenzo, V.: Cell regulation - putting together pieces of the big puzzle. Curr. Op. Microbiol 4, 117–118 (2001)CrossRefGoogle Scholar
  7. 7.
    Cavaliere, M.: Evolution Communication P-Systems. In: [16], [17], pp. 134–145, 206–223 (2003)Google Scholar
  8. 8.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. In: A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, London (1997)Google Scholar
  9. 9.
    Csuhaj-Varjú, E., Kelemen, J., Kelemenova, A., Păun, G.: Eco-Grammar Systems: A Grammatical Framework for Studying Life-Like Interactions. Artificial Life 3, 1–28 (1997)CrossRefGoogle Scholar
  10. 10.
    Csuhaj-Varjú, E., Salomaa, A.: Networks of Parallel Language Processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M.: Bulletin of the EATCS (2005) (to appear)Google Scholar
  12. 12.
    Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117, 277–296 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Martin-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.): Membrane computing. International workshop, WMC 2003. LNCS, vol. 2933. Springer, Heidelberg (2004) (revised papers)Google Scholar
  14. 14.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61, 108–143 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Păun, G.: Membrane computing. An introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  16. 16.
    Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): WMC 2002. LNCS, vol. 2597. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  17. 17.
    Păun, G., Riscos-Nunez, A., Romero-Jimenez, A., Sancho-Caparrini, F. (eds.): Second brainstorming week on membrane computing, Seville, 2-7 February 2004. Technical Report 01/2004, Department of Computer Science and Artificial Intelligence, University of Seville, Spain (2004)Google Scholar
  18. 18.
    Swift, S., Downie, J.A., Whitehead, N.A., Barnard, A.M.L., Salmond, G.P.C., Williams, P.: Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Micro Physiol 45, 199–270 (2001)CrossRefGoogle Scholar
  19. 19.
    Williams, P., Camara, M., Hardman, A., Swift, S., Milton, D., Hope, V.J., Winzer, K., Middleton, B., Pritchard, D.I., Bycroft, B.W.: Quorum sensing and the population dependent control of virulence. Phil. Trans Roy Soc London B 355(1397), 667–680 (2000)CrossRefGoogle Scholar
  20. 20.
    Winzer, K., Hardie, K.H., Williams, P.: Bacterial cell-to-cell communication: sorry can’t talk now – gone to lunch! Curr Op. Microbiol 5, 216–222 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francesco Bernardini
    • 1
  • Marian Gheorghe
    • 1
  • Natalio Krasnogor
    • 2
  • German Terrazas
    • 2
  1. 1.Department of Computer ScienceUniversity of SheffieldUK
  2. 2.ASAP Group, School of Computer Science and ITUniversity of NottinghamUK

Personalised recommendations