Advertisement

Membrane Computing: Power, Efficiency, Applications

  • Gheorghe Păun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)

Abstract

Membrane computing is an young but already well developed branch of natural computing, having as its goal to abstract computing models from the structure and the functioning of the living cell.

The present paper is an informal introduction to membrane computing, presenting the basic ideas, some central (mathematical) results, and the main areas of application.

Keywords

Turing Machine Evolution Rule Elementary Membrane Natural Computing Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberich, R., Casasnovas, J., Llabrés, M., Miró–Juliá, J., Rocha, J., Rosselló, F. (eds.): Brainstorming Workshop on Uncertainty in Membrane Computing. Universitat de les Illes Malears, Palma de Mallorca (November 2004)Google Scholar
  2. 2.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  3. 3.
    Alhazov, A., Freund, R., Păun, G.: P systems with active membranes and two polarizations. In: [25], pp. 20–36Google Scholar
  4. 4.
    Alhazov, A., Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: Communicative P systems with minimal cooperation. In: [19], pp. 162–178Google Scholar
  5. 5.
    Ardelean, I.I.: The relevance of biomembranes for P systems. Fundamenta Informaticae 49(1–3), 35–43 (2002)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bartosik, J.: Paun’s systems in modeling of human resource management. In: Proc. Second Conf. Tools and Methods of Data Transformation, WSU Kielce (2004)Google Scholar
  7. 7.
    Bray, D.: Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995)CrossRefGoogle Scholar
  8. 8.
    Ciobanu, G., Wenyuan, G.: A P system running on a cluster of computers. In: [18], pp. 123–139Google Scholar
  9. 9.
    Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Berlin (2005)Google Scholar
  10. 10.
    Freund, R., Kari, L., Oswald, M., Sosik, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Sci. 330(2), 251–266 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Available membrane computing software. In: [9], pp. 411–438Google Scholar
  12. 12.
    Ibarra, O.H.: The number of membranes matters. In: [18], pp. 218–231Google Scholar
  13. 13.
    Ibarra, O.H.: On determinism versus nondeterminism in P systems (submitted) (2004), available at, http://psystems.disco.unimib.it
  14. 14.
    Hoffmeyer, J.: Surfaces inside surfaces. On the origin of agency and life. Cybernetics and Human Knowing 5(1), 33–42 (1998)Google Scholar
  15. 15.
    Ji, S.: The cell as the smallest DNA-based molecular computer. BioSystems 52, 123–133 (1999)CrossRefGoogle Scholar
  16. 16.
    Loewenstein, W.R.: The Touchstone of Life. Molecular Information, Cell Communication, and the Foundations of Life. Oxford University Press, Oxford (1999)Google Scholar
  17. 17.
    Marcus, S.: Bridging P systems and genomics: A preliminary approach. In: [26], pp. 371–376Google Scholar
  18. 18.
    Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.): WMC 2003. LNCS, vol. 2933. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  19. 19.
    Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.): WMC 2004. LNCS, vol. 3365. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  20. 20.
    Nishida, T.Y.: An application of P system: A new algorithm for NP-complete optimization problems. In: Callaos, N., et al. (eds.) Proceedings of the 8th World Multi-Conference on Systems, Cybernetics and Informatics, vol. V, pp. 109–112 (2004)Google Scholar
  21. 21.
    Nishida, T.Y.: Membrane algorithms: Approximate algorithms for NP-complete optimization problems. In: [9], pp. 301–312Google Scholar
  22. 22.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000) (and Turku Center for Computer Science-TUCS Report 208, November 1998, http://www.tucs.fi)
  23. 23.
    Păun, G.: Computing with Membranes: An Introduction. Springer, Berlin (2002)Google Scholar
  24. 24.
    Păun, G., Pazos, J., Pérez-Jiménez, M.J., Rodriguez-Paton, A.: Symport/antiport P systems with three objects are universal. Fundamenta Informaticae 64, 1–4 (2005)MathSciNetGoogle Scholar
  25. 25.
    Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.): Proceedings of the Second Brainstorming Week on Membrane Computing, Sevilla, February 2004. Technical Report 01/04 of Research Group on Natural Computing, Sevilla University, Spain (2004)Google Scholar
  26. 26.
    Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): WMC 2002. LNCS, vol. 2597. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  27. 27.
    Pérez–Jiménez, M.J., Romero–Jiménez, A., Sancho–Caparrini, F.: Computationally hard problems addressed through P systems. In: [9], pp. 313–346Google Scholar
  28. 28.
    Petreska, B., Teuscher, C.: A hardware membrane system. In: [18], pp. 269–285Google Scholar
  29. 29.
    Sosik, P.: The computational power of cell division in P dystems: Beating down parallel computers? Natural Computing 2(3), 287–298 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 289–301. Springer, London (2000)Google Scholar
  31. 31.
    The Web Page of Membrane Computing: http://psystems.disco.unimib.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gheorghe Păun
    • 1
    • 2
  1. 1.Institute of Mathematics of the Romanian AcademyBucureştiRomania
  2. 2.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain

Personalised recommendations