Advertisement

The Low Splitting Theorem in the Difference Hierarchy

  • Angsheng Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)

Abstract

It is shown that for any 2-computably enumerable Turing degrees a, l, if l ′ = 0′, and l < a, then there are 2-computably enumerable Turing degrees x 0, x 1 such that both lx 0, x 1 < a and x 0x 1 = a hold, extending the Robinson low splitting theorem for the computably enumerable degrees to the difference hierarchy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arslanov, M.M.: Structural properties of the degrees below 0’. Dokl. Akad. Nauk SSSR (N.S.) 283, 270–273 (1985)MathSciNetGoogle Scholar
  2. 2.
    Arslanov, M.M.: Open questions about the n-c.e. degrees. In: Merman, M., Cholak, P., Lempp, S., Shore, R.A. (eds.) Computability Theory and Its Applications: Current Trends and Open Problems. Contemporary Mathematics, vol. 257, pp. 15–22 (2000)Google Scholar
  3. 3.
    Arslanov, M.M., Cooper, S.B., Li, A.: There is no low maximal d.c.e. degree. Math. Logic Quart. 46, 409–416 (2000); 50(6), 628–636 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cooper, S.B.: Minimal degrees and the jump operator. J. Symbolic Logic 38, 249–271 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cooper, S.B.: On a theorem of C. E. M. Yates (1974), handwritten notesGoogle Scholar
  6. 6.
    Cooper, S.B.: A splitting theorem for the n-r.e. degrees. Proc. Amer. Math. Soc. 115, 461–471 (1992)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Cooper, S.B., Harrington, L., Lachlan, A.H., Lempp, S., Soare, R.I.: The d-r.e. degrees are not dense. Ann. Pure Appl. Logic 55, 125–151 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cooper, S.B., Lempp, S., Watson, P.: Weak density and cupping in the d-r.e. degrees. Israel J. Math. 67, 137–152 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cooper, S.B., Li, A.: Turing definability in the Ershov hierarchy. J. London Math. Soc. 66(2), 513–528 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Downey, R.: D.r.e. degrees and the nondiamond theorem. Bull. London Math. Soc. 21, 43–50 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ershov, Y.L.: A hierarchy of sets, Part I. Algebra i Logika 7, 47–73 (1968) (Russian); Algebra and Logic 7, 24–43 (1968) (English translation) Google Scholar
  12. 12.
    Ershov, Y.L.: A hierarchy of sets, Part II. Algebra i Logika 7, 15–47 (1968) (Russian); Algebra and Logic 7, 212–232 (1968) (English translation) Google Scholar
  13. 13.
    Lachlan, A.H.: Lower bounds for pairs of recursively enumerable degrees. Proc. London Math. Soc. 16(3), 537–569 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Li, A., Yi, X.: Cupping the recursively enumerable degrees by d.r.e. degrees. Proc. London Math. Soc. 78(3), 1–21 (1999)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Robinson, R.W.: Interpolation and embedding in the recursively enumerable degrees. Ann. of Math. 93(2), 285–314 (1971)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Sacks, G.E.: On the degrees less than 0’. Ann. of Math. 77, 211–231 (1963)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Sacks, G.E.: The recursively enumerable degrees are dense. Ann. of Math. 80(2), 300–312 (1964)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Soare, R.I.: Recursively enumerable sets and degrees. Springer, Heidelberg (1987)Google Scholar
  19. 19.
    Yates, C.E.M.: Initial segments of the degrees of unsolvability, Part II: minimal degrees. J. Symbolic Logic 35, 243–266 (1970)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Angsheng Li
    • 1
  1. 1.Institute of SoftwareChinese Academy of SciencesBeijingP. R. China

Personalised recommendations