The Small Grzegorczyk Classes and the Typed λ-Calculus

  • Lars Kristiansen
  • Mathias Barra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)


The class \(\Delta^\mathbb{N}_{0}\) of rudimentary relations and the small relational Grzegorczyk classes \(\varepsilon^{0}_{*}, \varepsilon^{1}_{*}, \varepsilon^{2}_{*}\) attracted fairly much attention during the latter half of the previous century, e.g. Gandy [6], Paris-Wilkie [20], and numerous others.


Turing Machine Function Algebra Reduction Rule Explicit Bound Product Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckmann, A., Weiermann, A.: Characterizing the elementary recursive functions by a fragment of Gödel’s T. Arch. Math. Logic 39(7), 475–491 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellantoni, S.J., Cook, S.: A New Recursion-Theoretic Characterization of the Polytime Functions. Computational Complexity 2, 7–110 (1992)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bel’tyukov, A.P.: A machine description and the hierarchy of initial Grzegorczyk classes. Zap. Naucn. Sem. Leninigrad. Otdel. May. Inst. Steklov. (LOMI) 88, 30–46 (1979); J. Soviet Math. 20 (1982) Google Scholar
  4. 4.
    Clote, P.: Computation Models and Function Algebra. In: Griffor, E. (ed.) Handbook of Computability Theory. Elsevier, Amsterdam (1996)Google Scholar
  5. 5.
    Esbelin, M.-A., More, M.: Rudimentary relations and primitive recursion: A toolbox. Theoretical Computer Science 193, 129–148 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gandy, R.: Some relations between classes of low computational complexity. Bulletin of London Mathematical Society, 127–134 (1984)Google Scholar
  7. 7.
    Grzegorczyk, A.: Some classes of recursive functions. Rozprawy Matematyczne, No. IV, Warszawa (1953)Google Scholar
  8. 8.
    Harrow, K.: Sub-elementary classes of functions and relations. Doctoral Dissertation, New York University, Department of Mathematics (1973)Google Scholar
  9. 9.
    Hindley, J.R., Seldin, J.P.: Introduction to Combinators and λ-caclulus. London Mathematical Society, Student Texts, vol. 1. Cambridge University Press, Cambridge (1984)Google Scholar
  10. 10.
    Jones, N.D.: The expressive power of higher-order types or, life without CONS. J. Functional Programming 11, 55–94 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Jones, N.D.: LOGSPACE and PTIME characterized by programming languages. Theoretical Computer Science 228, 151–174 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kristiansen, L.: Neat function algebraic characterizations of LOGSPACE and LINSPACE. Computational Complexity (accepted)Google Scholar
  13. 13.
    Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative programming languages. Theoretical Computer Science 318, 139–161 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kristiansen, L., Voda, P.J.: Complexity classes and fragments of C. Information Processing Letters 88, 213–218 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kristiansen, L., Voda, P.J.: The surprising power of restricted programs and Gödel’s functionals. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 345–358. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Kristiansen, L., Voda, P.J.: Programming languages capturing complexity classes (Submitted)Google Scholar
  17. 17.
    Kutylowski, M.: Small Grzegorczyk classes. J. London Math. Soc. 36(2), 193–210 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Leivant, D.: Intrinsic theories and computational complexity. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 177–194. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Odifreddi, P.: Classical Recursion Theory, vol. II. North-Holland, Amsterdam (1999)zbMATHGoogle Scholar
  20. 20.
    Paris, J.B., Wilkie, A.: Counting problems in bounded arithmetic. In: Methods in mathematical logic. Proceedings, Caracas 1983. Lecture Notes in Mathematics, vol. 1130, pp. 317–340. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  21. 21.
    Ritchie, R.W.: Classes of predictably computable functions. Trans. Am. Math. Soc. 106, 139–173 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rose, H.E.: Subrecursion. Functions and hierarchies. Clarendon Press, Oxford (1984)zbMATHGoogle Scholar
  23. 23.
    Simmons, H.: The realm of primitive recursion. Arch. Math. Logic 27, 177–188 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Simmons, H.: Derivation and computation. Taking the Curry-Howard correspondence seriously. Cambridge Tracts in Theoretical Computer Science, vol. 51. Cambridge University, Cambridge (2000)zbMATHGoogle Scholar
  25. 25.
    Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003); Bezem, M., Klop, J.W., de Vrijer, R. (eds.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lars Kristiansen
    • 1
    • 2
  • Mathias Barra
    • 2
  1. 1.Faculty of EngineeringOslo University CollegeOsloNorway
  2. 2.Department of MathematicsUniversity of OsloOsloNorway

Personalised recommendations