Towards Computability of Higher Type Continuous Data

  • Margarita Korovina
  • Oleg Kudinov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)


This paper extends the logical approach to computable analysis via Σ–definability to higher type continuous data such as functionals and operators. We employ definability theory to introduce computability of functionals from arbitrary domain to the real numbers. We show how this concept works in particular cases.


Computable Analysis Logical Approach High Type Abstract Structure Arbitrary Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M.: First-order definability on finite structures. Annals of Pure and Applied Logic 45, 211–225 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barwise, J.: Admissible sets and Structures. Springer, Berlin (1975)zbMATHGoogle Scholar
  3. 3.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Berlin (1996)Google Scholar
  4. 4.
    Ershov, Y.L.: Definability and computability. Plenum, New-York (1996)Google Scholar
  5. 5.
    Friedman, H., Ko, K.: Computational complexity of real functions. Theoretical Computer Science 20, 323–352 (1992)MathSciNetGoogle Scholar
  6. 6.
    Korovina, M., Kudinov, O.: Characteristic properties of majorant-computability over the reals. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 188–204. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Korovina, M., Kudinov, O.: Formalisation of Computability of Operators and Real-Valued Functionals via Domain Theory. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 146–168. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Korovina, M., Kudinov, O.: Semantic Characterisations of Second-Order Computability over the Real Numbers. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 160–173. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Korovina, M.V.: Gandy’s Theorem on Abstract Structures without the Equality Test. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS (LNAI), vol. 2850, pp. 290–301. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Korovina, M.: Computational aspects of Σ-definability over the real numbers without the equality test. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 330–344. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Korovina, M., Kudinov, O.: Towards Computability of Higher Type Continuous Data. the full version,
  12. 12.
    Moschovakis, Y.N.: Abstract first order computability I, II. Transactions of the American Mathematical Society 138, 427–504 (1969)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin (1988)Google Scholar
  14. 14.
    Tucker, J.V., Zucker, J.I.: Projections of semicomputable relations on astract data types. International Journal of the Foundations of Computer Science 2, 267–296 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Margarita Korovina
    • 1
    • 2
  • Oleg Kudinov
    • 3
  1. 1.Lehrgebiet Theoretische Informatik I, Berechenbarkeit und Logik, Fachbereich InformatikFernUniversität in Hagen, InformatikzentrumHagenGermany
  2. 2.Sobolev Institute of MathematicsSiberian Branch of the Russian Academy of SciencesRussia
  3. 3.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations