Combinatorial Models of Gene Assembly

  • Tero Harju
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)


We consider formal recombination operations presented in terms of string, graphs and permutations. These operations are faithful to the molecular operations of gene assembly introduced by Prescott, Ehrenfeucht, and Rozenberg [17]. The results mentioned here on the formal operations are mostly stated in the recent book [8], where one also finds the original references.


Combinatorial Model Signed Graph Circle Graph Chord Diagram Signed String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E., Chrobak, M., Noga, J., Sgall, J., Woeginger, G.: Solution of a problem in DNA computing. Theoret. Comput. Sci. 287, 387–391 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arratia, R., Bollobáas, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. In: Proc. Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 237–245. ACM, New York (2000)Google Scholar
  3. 3.
    Birman, J.S., Trapp, R.: Braided chord diagrams. J. Knot Theory and its Ramifications 7, 1–22 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouchet, A.: Circle graphs. Combinatorica 7, 243–254 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouchet, A.: Transforming trees by successive local complementations. J. Graph Theory 12, 195–207 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouchet, A.: Circle graph obstructions. J. Combin. Theory Ser B 60, 107–144 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Caprara, A.: Sorting by reversals is difficult. In: Istrail, S., Pevzner, P., Waterman, M. (eds.) 1st Annual Int. Conf. on Comput. Molecular Biology, pp. 75–83 (1997)Google Scholar
  8. 8.
    Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation in Living Cells. Gene Assembly in Ciliates. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Fon-der-Flaas, D.: On local complementations of graphs. In: Combinatorics (Eger, 1987), Colloq. Math. Soc. János Bolyai, vol. 52, pp. 257–266. North-Holland, Amsterdam (1988)Google Scholar
  10. 10.
    de Fraysseix, H.: A characterization of circle graphs. European J. Combin. 5, 223–238 (1984)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip. In: Proc. 27th ACM Symp. on Theory of Computing, pp. 178–189 (1995)Google Scholar
  12. 12.
    Jahn, C.L., Klobutcher, L.A.: Genome remodeling in ciliated protozoa. Ann. Rev. Microbiol. 56, 489–520 (2000)CrossRefGoogle Scholar
  13. 13.
    Landweber, L.F., Kari, L.: The evolution of cellular computing: nature’s solution to a computational problem. In: Proc. 4th DIMACS meeting on DNA based computers, Philadelphia, PA, pp. 3–15 (1998)Google Scholar
  14. 14.
    Prescott, D.M.: The evolutionary scrambling and developmental unscambling of germline genes in hypotrichous ciliates. Nucleic Acids Res. 27(5), 1243–1250 (1999)CrossRefGoogle Scholar
  15. 15.
    Prescott, D.M.: Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat Rev Genet. 1(3), 191–198 (2000)CrossRefGoogle Scholar
  16. 16.
    Prescott, D.M., Bostock, C.J., Murti, K.G., Lauth, M.R., Gamow, E.: DNA in ciliated protozoa. I. Electron microscopy and sedimentation analysis of macronuclear and micronuclear DNA of Stylonychia mytilus. Chromosoma 34, 355–366 (1971)CrossRefGoogle Scholar
  17. 17.
    Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Molecular operations for DNA processing in hypotrichous ciliates. European J Protistology 37, 241–260 (2001)CrossRefGoogle Scholar
  18. 18.
    Zaslavsky, T.: Bibliography of Signed and Gain Graphs. Electronic J. Combin., Dynamic Surveys (1999),

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tero Harju
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations