Borel Ranks and Wadge Degrees of Context Free ω-Languages

  • Olivier Finkel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)


We determine completely the Borel hierarchy of the class of context free ω-languages, showing that, for each recursive non null ordinal α, there exist some Σ\(_{\alpha}^{\rm 0}\)-complete and some Π\(_{\alpha}^{\rm 0}\)-complete ω-languages accepted by Büchi 1-counter automata.


Turing Machine Full Version Acceptance Condition Context Free Language Storage Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berstel, J.: Transductions and context free languages. Teubner Studienbücher Informatik (1979)Google Scholar
  2. 2.
    Cohen, R.S., Gold, A.Y.: Theory of ω-languages, parts one and two. Journal of Computer and System Science 15, 169–208 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duparc, J., Finkel, O., Ressayre, J.-P.: Computer science and the fine structure of Borel sets. Theoretical Computer Science 257(1–2), 85–105 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Duparc, J.: Wadge hierarchy and Veblen hierarchy: Part 1: Borel sets of finite rank. Journal of Symbolic Logic 66(1), 56–86 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Duparc, J.: A hierarchy of deterministic context free ω-languages. Theoretical Computer Science 290(3), 1253–1300 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Engelfriet, J., Hoogeboom, H.J.: X-automata on ω-words. Theoretical Computer Science 110(1), 1–51 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Finkel, O.: On the Wadge hierarchy of omega context free languages. In: Proceedings of the International Workshop on Logic and Complexity in Computer Science, held in Honor of Anatol Slissenko for his 60th Birthday, Créteil, France, pp. 69–79 (2001)Google Scholar
  8. 8.
    Finkel, O.: Topological properties of omega context free languages. Theoretical Computer Science 262(1–2), 669–697 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Finkel, O.: Wadge hierarchy of omega context free languages. Theoretical Computer Science 269(1–2), 283–315 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Finkel, O.: Borel hierarchy and omega context free languages. Theoretical Computer Science 290(3), 1385–1405 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Finkel, O.: On omega context free languages which are Borel sets of infinite rank. Theoretical Computer Science 299(1-3), 327–346 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Finkel, O.: On the accepting power of two-tape Büchi automata (2004) (preprint)Google Scholar
  13. 13.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. In: Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Reading (1979)Google Scholar
  14. 14.
    Kechris, A.S.: Classical descriptive set theory. Springer, New York (1995)zbMATHGoogle Scholar
  15. 15.
    Lescow, H., Thomas, W.: Logical specifications of infinite computations. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 583–621. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Moschovakis, Y.N.: Descriptive set theory. North-Holland Publishing Co., Amsterdam (1980)zbMATHGoogle Scholar
  17. 17.
    Nivat, M.: Sur les ensembles de mots infinis engendrés par une grammaire algébrique. RAIRO Informatique Théorique et Applications 12(3), 259–278 (1978)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Perrin, D., Pin, J.-E.: Infinite words, automata, semigroups, logic and games. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  19. 19.
    Simonnet, P.: Automates et théorie descriptive. PhD thesis, Université Paris VII (1992)Google Scholar
  20. 20.
    Staiger, L.: Hierarchies of recursive ω-languages. Elektronische Informationsverarbeitung und Kybernetik 22(5-6), 219–241 (1986)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Staiger, L.: ω-languages. In: Handbook of formal languages, vol. 3, pp. 339–387. Springer, Berlin (1997)Google Scholar
  22. 22.
    Staiger, L., Wagner, K.: Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektron. Informationsverarbeit. Kybernetik 10, 379–392 (1974)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal models and semantics, vol. B, pp. 135–191. Elsevier, Amsterdam (1990)Google Scholar
  24. 24.
    Thomas, W.: Infinite games and verification (extended abstract of a tutorial). In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Wadge, W.: Reducibility and determinateness in the Baire space. PhD thesis, University of California, Berkeley (1983)Google Scholar
  26. 26.
    Wagner, K.: On ω-regular sets. Information and Control 43(2), 123–177 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Walukiewicz, I.: Pushdown processes: games and model checking. Information and Computation 157, 234–263 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Olivier Finkel
    • 1
  1. 1.Equipe de Logique Mathématique, U.F.R. de MathématiquesUniversité Paris 7Paris cedex 05France

Personalised recommendations