Computability in Computational Geometry

  • Abbas Edalat
  • Ali A. Khanban
  • André Lieutier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)


We promote the concept of object directed computability in computational geometry in order to faithfully generalise the well-established theory of computability for real numbers and real functions. In object directed computability, a geometric object is computable if it is the effective limit of a sequence of finitary objects of the same type as the original object, thus allowing a quantitative measure for the approximation. The domain-theoretic model of computational geometry provides such an object directed theory, which supports two such quantitative measures, one based on the Hausdorff metric and one on the Lebesgue measure. With respect to a new data type for the Euclidean space, given by its non-empty compact and convex subsets, we show that the convex hull, Voronoi diagram and Delaunay triangulation are Hausdorff and Lebesgue computable.


Convex Hull Compact Subset Voronoi Diagram Computational Geometry Delaunay Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, A., Birkedal, L., Scott, D.S.: Equilogical spaces. Theoretical Computer Science 315(1), 35–59 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berggren, J.L.: Episodes in the Mathematics of Medieval Islam. Springer, Heidelberg (1986)zbMATHGoogle Scholar
  3. 3.
    Blanck, J., Stoltenberg-Hansen, V., Tucker, J.V.: Domain representations of partial functions, with applications to spatial objects and constructive volume geometry. Theoretical Computer Science 284, 207–240 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space I: Closed and compact subsets. Theoretical Computer Science 219, 65–93 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Edalat, A.: Domains for computation in mathematics, physics and exact real arithmetic. Bulletin of Symbolic Logic 3(4), 401–452 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Edalat, A., Khanban, A.A., Lieutier, A.: Computational geometry with imprecise input data, Available from,
  7. 7.
    Edalat, A., Lieutier, A.: Foundation of a computable solid modeling. In: Proceedings of the fifth symposium on Solid modeling and applications, ACM Symposium on Solid Modeling and Applications, pp. 278–284 (1999)Google Scholar
  8. 8.
    Edalat, A., Lieutier, A.: Foundation of a computable solid modelling. Theoretical Computer Science 284(2), 319–345 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Edalat, A., Lieutier, A., Kashefi, E.: The convex hull in a new model of computation. In: Proc. 13th Canad. Conf. Comput. Geom., pp. 93–96 (2001)Google Scholar
  10. 10.
    Edalat, A., Sünderhauf, P.: A domain theoretic approach to computability on the real line. Theoretical Computer Science 210, 73–98 (1998)CrossRefGoogle Scholar
  11. 11.
    Ge, X., Nerode, A.: On extreme points of convex compact Turing located sets. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 114–128. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)zbMATHGoogle Scholar
  13. 13.
    Grzegorczyk, A.: On the definition of computable real continuous functions. Fund. Math. 44, 61–71 (1957)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Khanban, A.A., Edalat, A., Lieutier, A.: Computability of partial Delaunay triangulation and Voronoi diagram. In: Brattka, V., Schröder, M., Weihrauch, K. (eds.). Electronic Notes in Theoretical Computer Science, vol. 66. Elsevier Science Publishers, Amsterdam (2002)Google Scholar
  15. 15.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1988)Google Scholar
  16. 16.
    Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Abramsky, D.G.S., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 357–526. Oxford University Press, Oxford (1995)Google Scholar
  17. 17.
    Struik, D.J.: Omar Khayyam, mathematician. The Mathematics Teacher 51(4), 280–285 (1958)Google Scholar
  18. 18.
    Turing, A.: On computable numbers with an application to the Entscheidungsproblem. Proc. London Mathematical Soc. 42, 230–265 (1936)zbMATHCrossRefGoogle Scholar
  19. 19.
    Turing, A.: On computable numbers with an application to the Entscheidungsproblem (a correction). Proc. London Mathematical Soc. 43, 544–546 (1937)zbMATHCrossRefGoogle Scholar
  20. 20.
    Weihrauch, K.: Computable Analysis (An Introduction). Springer, Heidelberg (2000)zbMATHGoogle Scholar
  21. 21.
    Ziegler, M.: Computability on regular subsets of Euclidean space. Math. Log. Q. 48(S1), 157–181 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ziegler, M.: Computable operators on regular sets. Mathematical Logic Quarterly, 392–404 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Abbas Edalat
    • 1
  • Ali A. Khanban
    • 1
  • André Lieutier
    • 2
  1. 1.Department of ComputingImperial College LondonUK
  2. 2.Dassault Systemes Provence, Aix-en-Provence & LMC/IMAGGrenobleFrance

Personalised recommendations