Advertisement

Abstract Geometrical Computation: Turing-Computing Ability and Undecidability

  • Jérôme Durand-Lose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)

Abstract

In the Cellular Automata (CA) literature, discrete lines inside (discrete) space-time diagrams are often idealized as Euclidean lines in order to analyze a dynamics or to design CA for special purposes. In this article, we present a parallel analog model of computation corresponding to this idealization: dimensionless signals are moving on a continuous space in continuous time generating Euclidean lines on (continuous) space-time diagrams. Like CA, this model is parallel, synchronous, uniform in space and time, and uses local updating. The main difference is that space and time are continuous and not discrete (ie ℝ instead of ℤ). In this article, the model is restricted to ℚ in order to remain inside Turing-computation theory. We prove that our model can carry out any Turing-computation through two-counter automata simulation and provide some undecidability results.

Keywords

Abstract geometrical computation Analog model of computation Cellular automata Geometry Turing universality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ilachinski, A.: Cellular automata –a discrete universe. World Scientific, Singapore (2001)MATHGoogle Scholar
  2. 2.
    Boccara, N., Nasser, J., Roger, M.: Particle-like structures and interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules. Phys. Rev. A 44, 866–875 (1991)CrossRefGoogle Scholar
  3. 3.
    Durand-Lose, J.: Parallel transient time of one-dimensional sand pile. Theoret. Comp. Sci. 205, 183–193 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hordijk, W., Shalizi, C.R., Crutchfield, J.P.: An upper bound on the products of particle interactions in cellular automata. Phys. D 154, 240–258 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jakubowsky, M.H., Steiglitz, K., Squier, R.: Computing with solitons: a review and prospectus. In: [35], pp. 277–297 (2002)Google Scholar
  6. 6.
    Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J. ACM 12, 388–394 (1965)MATHCrossRefGoogle Scholar
  7. 7.
    Goto, E.: Ōtomaton ni kansuru pazuru [Puzzles on automata]. In: Kitagawa, T. (ed.) Jōhōkagaku eno michi [The Road to information science], pp. 67–92. Kyoristu Shuppan Publishing Co., Tokyo (1966)Google Scholar
  8. 8.
    Varshavsky, V.I., Marakhovsky, V.B., Peschansky, V.A.: Synchronization of interacting automata. Math. System Theory 4, 212–230 (1970)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional cellular automata. Complex Systems 4, 299–318 (1990)MATHMathSciNetGoogle Scholar
  10. 10.
    Mazoyer, J.: On optimal solutions to the Firing squad synchronization problem. Theoret. Comp. Sci. 168, 367–404 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Durand-Lose, J.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 439–450. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Durand-Lose, J.: Reversible space-time simulation of cellular automata. Theoret. Comp. Sci. 246, 117–129 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Delorme, M., Mazoyer, J.: Signals on cellular automata. In: [35], pp. 234–275 (2002)Google Scholar
  14. 14.
    Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret. Comp. Sci. 217, 53–80 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Durand-Lose, J.: Calculer géométriquement sur le plan – machines à signaux. Habilitation à diriger des recherches, École Doctorale STIC, Université de Nice-Sophia Antipolis (2003)Google Scholar
  16. 16.
    Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model. Theoret. Comp. Sci. 73, 1–46 (1990)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Durand-Lose, J.: Abstract geometrical computation for black hole computation (extended abstract). In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 175–186. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Asarin, E., Maler, O.: Achilles and the Tortoise climbing up the arithmetical hierarchy. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 471–483. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Bournez, O.: Some bounds on the computational power of piecewise constant derivative systems. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 143–153. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comp. Sci. 210, 21–71 (1999)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Weihrauch, K.: Introduction to computable analysis. Texts in Theoretical computer science. Springer, Berlin (2000)Google Scholar
  22. 22.
    Moore, C.: Recursion theory on the reals and continuous-time computation. Theoret. Comp. Sci. 162, 23–44 (1996)MATHCrossRefGoogle Scholar
  23. 23.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)Google Scholar
  24. 24.
    Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. System Sci. 50, 132–150 (1995)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Orponen, P.: A survey of continuous-time computation theory. In: Du, D.Z., Ko, K.J. (eds.) Advances in Algorithms, languages and complexity, pp. 209–224. Kluwer Academic Publisher, Dordrecht (1994)Google Scholar
  26. 26.
    Šíma, J., Orponen, P.: Computing with continuous-time Liapunov systems. In: STOC 2001, pp. 722–731. ACM Press, New York (2001)Google Scholar
  27. 27.
    Pour-El, M.B.: Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Trans. Amer. Math. Soc. 199, 1–28 (1974)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comp. Sci. 138, 67–100 (1995)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Minsky, M.: Finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  30. 30.
    Eberbach, E., Wegner, P.: Beyond Turing machines. Bull. EATCS 81, 279–304 (2003)MATHMathSciNetGoogle Scholar
  31. 31.
    Hamkins, J.D., Lewis, A.: Infinite time turing machines. J. Symb. Log. 65, 567–604 (2000)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hamkins, J.D.: Infinite time Turing machines: Supertask computation. Minds and Machines 12, 521–539 (2002)MATHCrossRefGoogle Scholar
  33. 33.
    Earman, J., Norton, J.D.: Forever is a day: supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science 60, 22–42 (1993)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Etesi, G., Nemeti, I.: Non-Turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41, 341–370 (2002)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Adamatzky, A. (ed.): Collision based computing. Springer, Heidelberg (2002)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jérôme Durand-Lose
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale d’OrléansUniversité d’OrléansOrléans Cedex 2France

Personalised recommendations