Advertisement

Schnorr Dimension

  • Rodney Downey
  • Wolfgang Merkle
  • Jan Reimann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)

Abstract

Following Lutz’s approach to effective (constructive) dimension, we define a notion of dimension for individual sequences based on Schnorr’s concept(s) of randomness. In contrast to computable randomness and Schnorr randomness, the dimension concepts defined via computable martingales and Schnorr tests coincide. Furthermore, we give a machine characterization of Schnorr dimension, based on prefix free machines whose domain has computable measure. Finally, we show that there exist computably enumerable sets which are Schnorr irregular: while every c.e. set has Schnorr Hausdorff dimension 0 there are c.e. sets of Schnorr packing dimension 1, a property impossible in the case of effective (constructive) dimension, due to Barzdin’s Theorem.

Keywords

Kolmogorov Complexity Packing Dimension Constructive Dimension Algorithmic Randomness Free Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. In: Proceedings of the Twenty-First Symposium on Theoretical Aspects of Computer Science, Montpellier, France, March 25-27, pp. 632–643. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Barzdin, J.M.: Complexity of programs which recognize whether natural numbers not exceeding n belong to a recursively enumerable set. Sov. Math., Dokl. 9, 1251–1254 (1968)zbMATHGoogle Scholar
  3. 3.
    Cai, J.-Y., Hartmanis, J.: On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. J. Comput. System Sci. 49(3), 605–619 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Downey, R.G., Griffiths, E.J.: Schnorr randomness. J. Symbolic Logic 69(2), 533–554 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and complexity. book (2004) (in preparation)Google Scholar
  6. 6.
    Eggleston, H.G.: The fractional dimension of a set defined by decimal properties. Quart. J. Math., Oxford Ser. 20, 31–36 (1949)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)zbMATHGoogle Scholar
  8. 8.
    Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications. Graduate Texts in Computer Science. Springer, New York (1997)zbMATHGoogle Scholar
  9. 9.
    Lutz, J.H.: Dimension in complexity classes. In: Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity, pp. 158–169. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  10. 10.
    Lutz, J.H.: Gales and the constructive dimension of individual sequences. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 902–913. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Lutz, J.H.: The dimensions of individual strings and sequences. Inform. and Comput. 187(1), 49–79 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inform. Process. Lett. 84(1), 1–3 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Reimann, J.: Computability and fractal dimension. Doctoral dissertation, Universität Heidelberg (2004)Google Scholar
  14. 14.
    Reimann, J., Stephan, F.: Effective Hausdorff dimension. In: Logic Colloquium 2001 (Vienna). Assoc. Symbol. Logic (2001) (to appear)Google Scholar
  15. 15.
    Ryabko, B.Y.: Coding of combinatorial sources and Hausdorff dimension. Dokl. Akad. Nauk SSSR 277(5), 1066–1070 (1984)MathSciNetGoogle Scholar
  16. 16.
    Ryabko, B.Y.: Noise-free coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity. Problemy Peredachi Informatsii 22(3), 16–26 (1986)MathSciNetGoogle Scholar
  17. 17.
    Ryabko, B.Y.: An algorithmic approach to the prediction problem. Problemy Peredachi Informatsii 29(2), 96–103 (1993)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Schnorr, C.-P.: Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Springer, Berlin (1971)zbMATHGoogle Scholar
  19. 19.
    Solovay, R.M.: Lecture notes on algorithmic randomness. unpublished manuscript, UCLA (1975)Google Scholar
  20. 20.
    Staiger, L.: Constructive dimension equals Kolmogorov complexity. Inform. Proc. Letters (to appear)Google Scholar
  21. 21.
    Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inform. and Comput. 103(2), 159–194 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Staiger, L.: A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems 31(3), 215–229 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Taylor, S.J., Tricot, C.: Packing measure, and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288(2), 679–699 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Tricot Jr., C.: Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc. 91(1), 57–74 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ville, J.: Etude critique de la notion de collectif. Gauthier-Villars (1939)Google Scholar
  26. 26.
    Wang, Y.: A separation of two randomness concepts. Inform. Process. Lett. 69(3), 115–118 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rodney Downey
    • 1
  • Wolfgang Merkle
    • 2
  • Jan Reimann
    • 2
  1. 1.School of Mathematics, Statistics and Computer ScienceVictoria UniversityWellingtonNew Zealand
  2. 2.Arbeitsgruppe Mathematische Logik und Theoretische Informatik, Institut für Informatik, Fakultät für Mathematik und InformatikRuprecht-Karls-Universität HeidelbergHeidelbergGermany

Personalised recommendations