Advertisement

A Logical Approach to Abstract Algebra

  • Thierry Coquand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)

Abstract

Recent work in constructive mathematics show that Hilbert’s program works for a large part of abstract algebra. Furthermore the arguments we get are not only elementary but also mathematically simpler. We present an example where the simplification was significant enough to suggest an improved version of a classical theorem. For this we use a general method to transform some logically complex first-order formulae in a geometrical form which may be interesting in itself.

Keywords

Prime Ideal Local Ring Maximal Ideal Jacobson Radical Constructive Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)zbMATHGoogle Scholar
  2. 2.
    Bezem, M., Coquand, T.: Newman’s lemma—a case study in proof automation and geometric logic. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 79, 86–100 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Blass, A.: Topoi and computation. Bulletin of the EATCS 36, 57–65 (1988)zbMATHGoogle Scholar
  4. 4.
    Coquand, T., Lombardi, H.: Hidden constructions in abstract algebra (3) Krull dimension. In: Fontana, M. (ed.) Commutative ring theory and applicatoins. LNPAM, vol. 131Google Scholar
  5. 5.
    Coquand, T., Lombardi, H., Roy, M.F.: Une caractérisation élémentaire de la dimension de Krull (2003) (preprint) Google Scholar
  6. 6.
    Coquand, T.: Sur un théorème de Kronecker concernant les variétés algébriques C. R. Acad. Sci. Paris, Ser. I 338, 291-294 (2004)Google Scholar
  7. 7.
    Coquand, T.: A Completness Proof for Geometrical Logic to appear (2005)Google Scholar
  8. 8.
    Coquand, T., Lombardi, H., Quitte, C.: Generating non-Noetherian modules constructively. Manuscripta mathematica 115, 513–520 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Coste, M., Lombardi, H., Roy, M.F.: Dynamical methods in algebra: effective Nullstellensätze. Annals of Pure and Applied Logic 111(3), 203–256 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ducos, L., Lombardi, H., Quitté, C., Salou, M.: Théorie algorithmique des anneaux arithmétiques, de Prüfer et de Dedekind. Journal of Algebra 281, 604–650 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Forster, O.: Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring. Math. Z. 84, 80–87 (1964)Google Scholar
  12. 12.
    Gentzen, G.: Collected Works. In: Szabo (ed.), North-Holland, Amsterdam (1969)Google Scholar
  13. 13.
    Heitmann, R.: Generating non-Noetherian modules efficiently. Michigan Math. J. 31(2), 167–180 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jacobsson, C., Löfwall, C.: Standard bases for general coefficient rings and a new constructive proof of Hilbert’s basis theorem. J. Symbolic Comput. 12(3), 337–371 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Joyal, A.: Le théorème de Chevalley-Tarski. Cahiers de Topologie et Géométrie Différentielle 16, 256–258 (1975)Google Scholar
  16. 16.
    Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Grössen. J. reine angew. Math. 92, 1–123 (1882); Reprinted in Leopold Kronecker’s Werke II, 237–387Google Scholar
  17. 17.
    Lombardi, H., Quitté, C.: Modules projectifs de type fini. (to appear)Google Scholar
  18. 18.
    Matsumura, H.: Commutative ring theory. In: Reid, M. (ed.) Translated from the Japanese. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986)Google Scholar
  19. 19.
    Serre, J.P.: Modules projectifs et espaces fibrés à fibre vectorielle. Séminaire P. Dubreil, Année (1957/1958)Google Scholar
  20. 20.
    R.G. Swan. The Number of Generators of a Module. Math. Z. 102, 318-322 (1967)Google Scholar
  21. 21.
    Wraith, G.: Intuitionistic algebra: some recent developments in topos theory. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Helsinki. Acad. Sci. Fennica, pp. 331–337 (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thierry Coquand
    • 1
  1. 1.Institutionen för DatavetenskapChalmers Tekniska HögskolaGöteborgSweden

Personalised recommendations