Advertisement

Evaluation of Two Free Form Deformation Based Motion Estimators in Cardiac and Chest Imaging

  • Bertrand Delhay
  • Patrick Clarysse
  • Jyrki Lötjönen
  • Toivo Katila
  • Isabelle E. Magnin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3504)

Abstract

In the context of motion estimation of the heart and thoracic structures from tomographic imaging, we investigated two free form deformations (FFD) based non linear registration methods as motion estimators. Standard and cylindrical FFD (CFFD) methods are evaluated in 2D, both on simulated and in vivo cardiac and thoracic images. Results tend to show that CFFD based method achieves the same accuracy with less parameters. However, the fast convergence of this model is hamped by a higher computing time with a straightforward implantation.

Keywords

Image Registration Angular Error Free Form Deformation High Computing Time Warp Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnet, S., Koenig, A., Roux, S., Hugonnard, P., Guillemaud, R., Grangeat, P.: Dynamic X-ray computed tomography. Proceedings of the IEEE 91, 1574–1587 (2003)CrossRefGoogle Scholar
  2. 2.
    Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of myocardial motion and strain patterns using a cylindrical B-Spline transformation model. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 88–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Lin, N., Duncan, J.S.: Generalized robust point matching using an extended free-form deformation model: Application to cardiac images. In: Proc. ISBI, pp. 320–323 (2004)Google Scholar
  4. 4.
    Deng, X., Denney, T.S.: Three-Dimensional myocardial strain reconstruction from tagged MRI using a cylindrical B-spline model. IEEE Transactions on Medical Imaging 23(7), 371–386 (2004)CrossRefGoogle Scholar
  5. 5.
    Viergever, M.A., Maintz, J.B.A.: A survey of medical image registration. Medical Image Analysis 2, 1–36 (1998)Google Scholar
  6. 6.
    Mäkelä, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q.C., Katila, T., Magnin, I.E.: A review of cardiac image registration methods. IEEE Transactions on Medical Imaging 21, 1011–1021 (2002)CrossRefGoogle Scholar
  7. 7.
    Horn, B., Shunck, B.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  8. 8.
    Bookstein, F.L.: Principal warps: Thin plate splines and decomposition of deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 567–585 (1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    Rohlfing, T., Maurer, C.R., Bluemke, J., Jacobs, M.: Volume Preserving non rigid registration of MR Breast images using Free Form deformation with an imcompressibility constraint. IEEE Transactions on Medical Imaging 22, 730–741 (2003)CrossRefGoogle Scholar
  10. 10.
    Johnson, H.J., Christenen, G.E.: Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging 21, 450–461 (2002)CrossRefGoogle Scholar
  11. 11.
    Unser, M., Albroudi, A., Eden, M.: B-Spline signal processing: PartI-Theory. IEEE Transactions on Signal Processing 41, 821–832 (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lötjönen, J., Magnin, I.E., Reissman, P., Nenonen, J., Katila, T.: Segmentation of magnetic resonance images using 3D deformable model. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1211–1221. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G.: Nonrigid registration using free form deformation: Application to breast MR images. IEEE Transactions on Medical Imaging 11, 712–721 (1999)CrossRefGoogle Scholar
  14. 14.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: SIGGRAPH, pp. 151–160 (1986)Google Scholar
  15. 15.
    Kybic, J.: Elastic Image Registration using Parametric Deformations Models. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (2001)Google Scholar
  16. 16.
    Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric modeling. In: International Conference on Computer Graphics and Interactive Techniques, pp. 187–196 (1990)Google Scholar
  17. 17.
    Boldea, V., Sarrut, D., Clippe, S.: Lung deformation estimation with non-rigid registration for radiotherapy treatment. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 770–777. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Wierzbicki, M., Drangova, M., Guiraudon, G., Peters, T.: Validation of dynamic heart models obtained using non-linear registration for virtual reality trainig planning and guidance of minimally invasive cardiac surgeries. Medical Image Analysis 8, 387–401 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bertrand Delhay
    • 1
  • Patrick Clarysse
    • 1
  • Jyrki Lötjönen
    • 2
  • Toivo Katila
    • 3
  • Isabelle E. Magnin
    • 1
  1. 1.Creatis, CNRS UMR 5515, Inserm U630VilleurbanneFrance
  2. 2.VTT Information TechnologyTampereFinland
  3. 3.Laboratory of Biomedical EngineeringHelsinki University of Technology, HUTFinland

Personalised recommendations