Assessment of Separation of Functional Components with ICA from Dynamic Cardiac Perfusion PET Phantom Images for Volume Extraction with Deformable Surface Models

  • Anu Juslin
  • Anthonin Reilhac
  • Margarita Magadán-Méndez
  • Edisson Albán
  • Jussi Tohka
  • Ulla Ruotsalainen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3504)


We evaluated applicability of ICA (Independent Component Analysis) for the separation of functional components from H \(_{\rm 2}^{\rm 15}\) O PET (Positron Emission Tomography) cardiac images. The effects of varying myocardial perfusion to the separation results were investigated using a dynamic 2D numerical phantom. The effects of motion in cardiac region were studied using a dynamic 3D phantom. In this 3D phantom, the anatomy and the motion of the heart were simulated based on the MCAT (Mathematical Cardiac Torso) phantom and the image acquisition process was simulated with the PET SORTEO Monte Carlo simulator. With ICA, it was possible to separate the right and left ventricles in the all tests, even with large motion of the heart. In addition, we extracted the ventricle volumes from the ICA component images using the Deformable Surface Model based on Dual Surface Minimization (DM-DSM). In the future our aim is to use the extracted volumes for movement correction.


Positron Emission Tomography Independent Component Analysis Blood Pool Independent Component Analysis Volume Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann, S.R., Herrero, P., Markham, J., Weinheimer, C.J., Walsh, M.N.: Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J. Am. Coll. Cardiol. 14, 639–652 (1989)CrossRefGoogle Scholar
  2. 2.
    Ter–Pogossian, M.M., Bergmann, S.R., Sobel, B.E.: Influence of Cardiac and Respiratory Motion on Tomographic Reconstructions of the Heart: Implications for quantitative Nuclear Cardiology. J. Comput. Assist. Tomogr. 6(6), 1148–1155 (1982)CrossRefGoogle Scholar
  3. 3.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, USA. John Wiley Sons, Inc., Chichester (2001)CrossRefGoogle Scholar
  4. 4.
    Lee, J.S., Lee, D.S., Ahn, J.Y., Cheon, G.J., Kim, S.-K., Yeo, J.S., Seo, K., Park, K.S., Chung, J.-K., Lee, M.C.: Blind separation of cardiac components and extraction of input function from \(H_{2}^{15}O\) dynamic myocardial PET using Independent Component Analysis. J. Nucl. Med. 42(6), 938–943 (2001)Google Scholar
  5. 5.
    Kalliokoski, K.K., Nuutila, P., Laine, H., Luotolahti, M., Janatuinen, T., Raitakari, O.T., Takala, T.O., Knuuti, J.: Myocardial perfusion and perfusion reserve in endurance-trained men. Med. Sci. Sports Exerc. 34, 948–953 (2002)CrossRefGoogle Scholar
  6. 6.
    Magadán-Méndez, M., Kivimäki, A., Ruotsalainen, U.: ICA separations of Functional Components from Dynamic Cardiac PET data. IEEE Nuclear Science Symposium Conference Record 4, 2618–2622 (2003)Google Scholar
  7. 7.
    Pretarius, P.H., Xia, W., King, M.A., Tsui, B.M.W., Lacroix, K.J.: A mathematical model of motion of the heart for use in generating source and attenuation maps for simulating emission imaging. Med. Phys. 26(11), 2323–2332 (1999)CrossRefGoogle Scholar
  8. 8.
    Segars, W.P., Lalush, D.S., Tsui, B.W.M.: Modelling respiratory mechanics in the MCAT and spline based MCAT phantoms. IEEE Trans. Nucl. Sci. 48(1), 89–97 (2001)CrossRefGoogle Scholar
  9. 9.
    Reilhac, A., Lartizien, C., Costes, N., Comtat, C., Evans, A.C.: PET-SORTEO: A Monte Carlo-based simulator with high count rate capabilities. IEEE Trans. Nucl. Sci. 51(1), 46–52 (2004)CrossRefGoogle Scholar
  10. 10.
    Ruotsalainen, U., Raitakari, M., Nuutila, P., Oikonen, V., Sipilä, H., Teräs, M., Knuuti, J., Bloomfield, P., Iida, H.: Quantitative Blood Flow Measurement of Skeletal Muscle Using Oxygen-15 water and PET. J. Nucl. Med. 38, 314–319 (1997)Google Scholar
  11. 11.
    Furuie, S.S., Herman, G.T., Narayan, T.K., Kinahan, P.E., Karp, J.S., Lewitt, R.M., Matej, S.: A methodology for testing of statistically significant differences between fully 3D PET reconstruction algorithms. Phys. Med. Biol. 39, 341–354 (1994)CrossRefGoogle Scholar
  12. 12.
    Tohka, J., Mykkänen, J.: Deformable Mesh for Automated Surface Extraction from Noisy images. Int. J. Image and Graphics 4(3), 405–432 (2004)CrossRefGoogle Scholar
  13. 13.
    Mykkänen, J., Tohka, J., Luoma, J., Ruotsalainen, U.: Automatic Extraction of Brain Surface and Mid-sagittal plane from PET images applying deformable Models. Technical Report of Department of Computer Sciences, University of Tampere, Finland (2003),
  14. 14.
    Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for Independent Component Analysis. Neural Computation 9(7), 1483–1492 (1997)CrossRefGoogle Scholar
  15. 15.
    Jackson, D.A., Sommers, K.M., Harvey, H.H.: Similarity coefficients: Measures of co-occurence and association or simply measures of occurrence? The American Naturalist 133(3), 436–453 (1989)CrossRefGoogle Scholar
  16. 16.
    Albán, E., Katkovnik, V., Egiazarian, K.: Adaptive window size gradient estimation for image edge detection. In: Proceedings of SPIE Electronic Imaging, Image Processing: Algorithms and Systems II, Santa Clara, California, USA, pp. 54–65 (2003)Google Scholar
  17. 17.
    Albán, E., Tohka, J., Ruotsalainen, U.: Adaptive Edge Detection Based on 3D Kernel Functions for Biomedical Image Analysis. To appear in Proceedings of SPIE Electronic Imaging, Image Processing: Algorithms and Systems IV, San Jose, California, USA (January 2005)Google Scholar
  18. 18.
    Tohka, J.: Surface Smoothing Based on a Sphere Shape Model. In: Proc. of 6th Nordic Signal Processing Symposium, NORSIG 2004, pp. 17–20 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anu Juslin
    • 1
  • Anthonin Reilhac
    • 2
  • Margarita Magadán-Méndez
    • 1
  • Edisson Albán
    • 1
  • Jussi Tohka
    • 1
    • 3
  • Ulla Ruotsalainen
    • 1
  1. 1.Institute of Signal ProcessingTampere University of TechnologyTampereFinland
  2. 2.McConnell Brain Imaging CentreMontreal Neurological InstituteMontrealCanada
  3. 3.Laboratory of Neuro Imaging, Division of Brain Mapping, Department of NeurologyUCLA, School of MedicineLos AngelesUSA

Personalised recommendations