Advertisement

Reentry Anchoring at a Pair of Pulmonary Vein Ostia

  • L. Wieser
  • G. Fischer
  • F. Hintringer
  • S. Y. Ho
  • B. Tilg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3504)

Abstract

Recent findings in a sheep model of atrial fibrillation support the hypothesis that an organized micro-reentry could be the maintaining mechanism of the arrhythmia (mother wavelet). According to these studies we constructed a two dimensional computer model of tissue in the region around a pair of pulmonary vein ostia and investigated anchoring of a reentry wave at these ostia. We used the Luo Rudy phase I ionic current model to describe membrane kinetics and generated two different stages of electrical remodelling of the cells by varying the slow inward calcium current. Our attempt to initiate a stable reentry failed for cells with higher action potential duration and higher rate adaption. By simulating a higher stadium of electrical remodelling we finally were successful, and we were able to produce a periodic reentry. This led us to the conclusion that a low rate adaption (high electrical remodelling) facilitates organized activity in the atria.

Keywords

Pulmonary Vein Action Potential Duration Functional Block Rate Adaption Electrical Remodelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nattel, S.: New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002)CrossRefGoogle Scholar
  2. 2.
    Gray, R., Persov, A., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998)CrossRefGoogle Scholar
  3. 3.
    Schilling, R.: Which patient should be referred to an electrocardiologist: supraventricular tachycardia. Heart 36, 299–304 (2002)CrossRefGoogle Scholar
  4. 4.
    Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., Jalife, J.: Stable microreentrant sources as a mechansism of atrial fibrillation in the isolated sheep heart. Circulation 101, 194–199 (2000)Google Scholar
  5. 5.
    Chen, J., Mandapati, R., Berenfeld, O., Skanes, A., Gray, R., Jalife, J.: Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc. Res. 48, 220–232 (2000)CrossRefGoogle Scholar
  6. 6.
    Pappone, C., Rosiano, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., Salvati, A., Dicandia, C., Mazzone, P., Santinelli, V., Gulletta, S., Chierchia, S.: Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation 102, 2619–2628 (2000)Google Scholar
  7. 7.
    Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991)Google Scholar
  8. 8.
    Ten Tusscher, K., Panfilov, A.: Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Am. J. Physiol. Heart Circ. Physiol. 284, H542–H548 (2002)Google Scholar
  9. 9.
    Blanc, O., Virag, N., Vesin, J., Kappenberger, L.: A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans. Biomed. Eng. 48, 1229–1237 (2001)CrossRefGoogle Scholar
  10. 10.
    Ramirez, R.J., Nattel, S., Courtemanche, M.: Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. Am. J. Physiol. Heart Circ. Physiol. 279, H1767–H1785 (2000)Google Scholar
  11. 11.
    Ho, S.Y., Cabrera, J., Tran, V., Farre, J., Anderson, R., Sánchez-Quintana, D.: Architecture of the pulmonary veins: relevance to radiofrequency ablation. Heart 86, 265–270 (2001)CrossRefGoogle Scholar
  12. 12.
    Harrild, D.M., Henriquez, C.S.: A Computer Model of Normal Conduction in the Human Atria. Circ. Res. 87, e25–e36 (2000)Google Scholar
  13. 13.
    Winfree, A.T.: Rotors, fibrilation and dimensionality. In: Panfilov, A.V., Holden, A.V. (eds.) Computational Biology of the Heart, pp. 101–135. John Wiley & Sons, Chichester (1997)Google Scholar
  14. 14.
    Shaw, R.M., Rudy, Y.: The vulnerable window for unidirectioinal block in cardiac tissue: characterization and dependence on membrane excitability coupling. J. Cardiovasc. Electrophysiol. 6, 115–131 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • L. Wieser
    • 1
  • G. Fischer
    • 1
  • F. Hintringer
    • 2
  • S. Y. Ho
    • 3
  • B. Tilg
    • 1
  1. 1.Institute for Biomedical Signal Processing and ImagingUniversity for Health Sciences, Medical Informatics and Technology (UMIT)Hall in TirolAustria
  2. 2.Department for CardiologyUniversity Hospital InnsbruckInnsbruckAustria
  3. 3.Imperial College and Royal Brompton & Harefield HospitalsNational Heart & Lung InstituteLondonUK

Personalised recommendations