Virtual Ventricular Wall: Effects of Pathophysiology and Pharmacology on Transmural Propagation

  • Oleg V. Aslanidi
  • Jennifer L. Lambert
  • Neil T. Srinivasan
  • Arun V. Holden
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3504)

Abstract

Effects of pathophysiological conditions and pharmacological intervention on transmural propagation are computed for the virtual ventricular wall. ST depression during sub-endocardial ischaemia and unidirectional functional block in the vulnerable window during Class III drug action are explained by changes induced in the transmural dispersion of action potential duration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, S.M., Wan, X., Shipsey, S.J., Hart, G.: Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc. Res. 40, 322–331 (1998)CrossRefGoogle Scholar
  2. 2.
    Han, J., Moe, G.K.: Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14, 44–60 (1964)Google Scholar
  3. 3.
    Burton, F.L., Cobbe, S.M.: Dispersion of ventricular repolarization and refractory period. Cardiovasc. Res. 50, 10–23 (2001)CrossRefGoogle Scholar
  4. 4.
    Clayton, R.H., Holden, A.V.: Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. Prog. Biophys. Mol. Biol. 85, 473–499 (2004)CrossRefGoogle Scholar
  5. 5.
    Viswanathan, P.C., Rudy, Y.: Cellular arrhythmogenic effects of congenital and acquired long-QT syndrome in the heterogeneous myocardium. Circulation 101, 1192–1198 (2000)Google Scholar
  6. 6.
    Akar, F.G., Yan, G.-X., Antzelevitch, C., Rosenbaum, D.S.: Unique topographical distribution of M cells underlies re-entrant mechanism of Torsade de Pointes in the Long-QT syndrome. Circulation 105, 1247–1253 (2002)CrossRefGoogle Scholar
  7. 7.
    Antzelevitch, C., Shimizu, W., Yan, G.X., Sicouri, S., Weissenburger, J., Nesterenko, V.V., Burashnikov, A., Di Diego, J., Saffitz, J., Thomas, G.P.: The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol. 10, 1124–1152 (1999)CrossRefGoogle Scholar
  8. 8.
    Antzelevitch, C., Yan, G.X., Shimizu, W.: Transmural dispersion of repolarization and arrhyth-mogenicity: the Brugada syndrome versus the long QT syndrome. J. Electrocardiol. 32, 158–165 (1999)CrossRefGoogle Scholar
  9. 9.
    Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms – a model study. Circ. Res. 90, 889–896 (2002)CrossRefGoogle Scholar
  10. 10.
    Kleber, A.G.: ST-segment elevation in the electrocardiogram: a sign of myocardial ischaemia. Cardiovasc. Res. 45, 111–118 (2000)CrossRefGoogle Scholar
  11. 11.
    Li, D., Li, C.Y., Yong, A.C., Kilpatrick, D.: Source of electrocardiographic ST changes in subendocardial ischemia. Circ. Res. 82, 957–970 (1998)Google Scholar
  12. 12.
    Horacek, B.M., Wagner, G.S.: Electrocardiographic ST-segment changes during acute myocardial ischemia. Card. Electrophysiol. Rev. 6, 196–203 (2002)CrossRefGoogle Scholar
  13. 13.
    Huikuri, H.V., Castellanos, A., Myerburg, R.J.: Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001)CrossRefGoogle Scholar
  14. 14.
    Sicouri, S., Moro, S., Litovsky, S., Elizari, M.V., Antzelevitch, C.: Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J. Cardiovasc. Electrophysiol. 8, 1269–1279 (1997)CrossRefGoogle Scholar
  15. 15.
    Drouin, E., Lande, G., Charpentier, F.: Amiodarone reduces transmural heterogeneity of repolarization in the human heart. J. Am. Coll. Cardiol. 32, 1063–1067 (1998)CrossRefGoogle Scholar
  16. 16.
    Clayton, R.H., Holden, A.V.: Computational framework for simulating the mechanisms and ECG of re-entrant ventricular fibrillation. Physiol. Meas. 23, 707–726 (2002)CrossRefGoogle Scholar
  17. 17.
    Kohl, P., Noble, D., Winslow, R.L., Hunter, P.J.: Computational modelling of biological systems: tools and visions. Philos. Trans. Roy. Soc. A 358, 579–610 (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Aslanidi, O.V., Bailey, A., Biktashev, V.N., Clayton, R.H., Holden, A.V.: Enhanced self-termination of re-entrant arrhythmias as a pharmacological strategy for antiarrhythmic action. Chaos 12, 843–851 (2002)CrossRefGoogle Scholar
  19. 19.
    Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. I. Simula-tions of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994)Google Scholar
  20. 20.
    Shaw, R.M., Rudy, Y.: Electrophysiologic effects of acute myocardial ischaemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc. Res. 35, 256–272 (1997)CrossRefGoogle Scholar
  21. 21.
    ten Tusscher, K.H., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–H1589 (2004)CrossRefGoogle Scholar
  22. 22.
    Hyatt, C.J., Mironov, S.F., Wellner, M., Berenfeld, O., Popp, A.K., Weitz, D.A., Jalife, J., Pertsov, A.M.: Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys. J. 85, 2673–2683 (2003)CrossRefGoogle Scholar
  23. 23.
    Clayton, R.H., Holden, A.V.: Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study. Phys. Med. Biol. 48, 95–111 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Oleg V. Aslanidi
    • 1
  • Jennifer L. Lambert
    • 2
  • Neil T. Srinivasan
    • 2
  • Arun V. Holden
    • 1
  1. 1.School of Biomedical SciencesUniversity of LeedsUK
  2. 2.School of MedicineUniversity of LeedsUK

Personalised recommendations