Managing Deformable Objects in Cluster Rendering

  • Thomas Convard
  • Patrick Bourdot
  • Jean-Marc Vézien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)


This paper presents DRS (Distributed Rendering System), a software library for rendering dynamic 3D scenes on low cost Virtual Reality (VR) computers. This library allows the distribution of object descriptions and geometries over several graphics nodes of a PC cluster for synchronized rendering. The objects can be dynamic: in particular DRS can manage deformable objects over time. Data compression is put to profit to optimize transfer of objects geometry over the cluster nodes. This library allows real-time VR rendering on PC clusters for applications where objects are highly deformable, such as solid modeling or simulation. DRS is available as a set of C++ classes to manage the 3D objects as well as their synchronized distribution and rendering. We present experimental results in the form of examples of applications successfully ported to inexpensive distributed Virtual Reality hardware thanks to DRS.


Virtual Reality Slave Node Scene Graph Deformable Object Triangle Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cruz-Neira, C., Sandin, D., DeFanti, T.: Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE. In: Computer Graphics (Proceedings of SIGGRAPH 1993), pp. 135–142 (1993)Google Scholar
  2. 2.
    Kruger, W., Bohn, C., Frohlich, B., Schuth, H., Strauss, W., Wesche, G.: The Responsive Workbench: A Virtual Work Environment. IEEE Computer 28, 42–48 (1995)Google Scholar
  3. 3.
    Schaeffer, B., Goudeseune, C.: Syzygy: Native PC Cluster VR. In: Virtual Reality Conference 2003, pp. 15–22. IEEE, Los Alamitos (2003)Google Scholar
  4. 4.
    Tramberend, H.: Avango: A Distributed Virtual Reality Framework. In: Proceedings of Afrigraph 2001 (2001)Google Scholar
  5. 5.
    Allard, J., Gouranton, V., Lecointre, L., Melin, E., Raffin, B.: Net Juggler: Running VR Juggler with Multiple Displays on a Commodity Component Cluster. In: Virtual Reality Conference 2002, Orlando, Florida, p. 273. IEEE, Los Alamitos (2002)Google Scholar
  6. 6.
    Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: VR Juggler: A Virtual Platform for Virtual Reality Application Development. In: Virtual Reality Conference 2001, Yokohama, Japan (2001)Google Scholar
  7. 7.
    Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D., Klosowski, J.T.: Chromium: A Stream Processing Framework for Interactive Rendering on Clusters. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2002) 21, 693–702 (2002)Google Scholar
  8. 8.
    Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., Hanrahan, P.: WireGL: A Scalable Graphics System for Clusters. In: Proceedings of SIGGRAPH 2001, pp. 129–140 (2001)Google Scholar
  9. 9.
    Taubin, G., Rossignac, J.: Geometric Compression Through Topological Surgery. ACM Transactions on Graphics 17, 84–115 (1998)CrossRefGoogle Scholar
  10. 10.
    Rossignac, J.: Edgebreaker: Connectivity Compression for Triangle Meshes. IEEE Transactions on Visualization and Computer Graphics 5, 47–61 (1999)CrossRefGoogle Scholar
  11. 11.
    Deering, M.: Geometry Compression. In: Computer Graphics (Proceedings of SIGGRAPH 1995), pp. 13–20 (1995)Google Scholar
  12. 12.
    Evans, F., Skiena, S., Varshney, A.: Optimizing Triangle Strips for Fast Rendering. In: Proceedings IEEE Visualization 1996, pp. 319–326 (1996)Google Scholar
  13. 13.
    Akeley, K., Haeberli, P., Burns, D.: tomesh.c. C Program on SGI Developer’s Toolbox CD (1990)Google Scholar
  14. 14.
    Hérisson, J., Gros, P.E., Férey, N., Magneau, O., Gherbi, R.: DNA in Virtuo: Visualization and Exploration of 3D Genomic Structures. In: Proceedings Afrigraph 2004, pp. 35–40 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Convard
    • 1
  • Patrick Bourdot
    • 1
  • Jean-Marc Vézien
    • 1
  1. 1.LIMSI-CNRSUniversité Paris XI 

Personalised recommendations