Multi-modal Biometrics with PKI Technologies for Border Control Applications

  • Taekyoung Kwon
  • Hyeonjoon Moon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3495)


It is widely recognized that multi-modal biometrics has the potential to strengthen border protection by reducing the risk of passport fraud. However, it may take high costs to issue smart-card enabled passports over the world and to process a huge amount of biometric information (on-line). A public key cryptography is another useful tool for verifying a person’s identity in a stringent way, but a key management is one of critical problems arising from the use of cryptographic schemes. For example, a passport-holder should keep a private key in a smart-card-level device while an inspecting officer accesses a corresponding public key in an authentic manner. In this paper, we present a low-cost but highly-scalable method that uses multi-modal biometrics based on face and fingerprints, and public key infrastructures (PKIs) for border control applications. A digital signature in PKIs and multi-modal biometrics are carefully applied in our scheme, in order to reduce the possibility of undesirable factors significantly at nation’s borders without requiring any hardware device in passports. We could print a (publicly readable) barcodes on the passport instead of requiring the smart-card-level devices.


Biometric System Face Recognition System Biometric Template Face Space Illumination Normalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Sandhu, R.: The security of practical two-party RSA signature schemes (2001) (manuscript)Google Scholar
  2. 2.
    Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the American Mathematical Society (AMS) 46(2), 203–213 (1999)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999) and IEEE Trans. on Information Theory 46(4) (2000)Google Scholar
  4. 4.
    Boneh, D., Shacham, H., Lynn, B.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boyd, C.: Digital multisignatures. In: Cryptography and Coding, pp. 241–246. Oxford University Press, Oxford (1989)Google Scholar
  6. 6.
    Brands, S.: Rethinking public key infrastructures and digital certificates, p. 11, pp. 219–224. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Burke, H.E.: Handbook of bar Coding Systems. Van Nostrand Reinhold, New York (1984)Google Scholar
  8. 8.
    Coppersimth, D., Franklin, M., Patarin, J., Reiter, M.: Low-exponent RSA with related messages. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 1–9. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Daon Inc., Biometric Authentication & Digital Signatures for the Pharmaceutical Industry, White paper available at
  10. 10.
    Daugman, J.: High confidence personal identifications by rapid video analysis of iris texture. In: IEEE International Carnahan Conference on Security Technologies, pp. 50–60 (1992)Google Scholar
  11. 11.
    Daugman, J.: High confidence personal identifications by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 648–656 (1993)CrossRefGoogle Scholar
  12. 12.
    Davida, G., Frankel, Y., Matt, B.: On enabling secure applications through off-line biometric identification. In: IEEE Symposium on Security and Privacy, pp. 148–159 (1998)Google Scholar
  13. 13.
    Denso Inc., QRmaker: User’s Manual, Denso Corporation, Aichi, Japan (1998)Google Scholar
  14. 14.
    Fukunaga, K.: Introduction to statistical pattern recongition. Academic Press, Orlando (1972)Google Scholar
  15. 15.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal of Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jain, A., Hong, L., Pankanti, S.: Biometric identification. Communications of the ACM (February 2000)Google Scholar
  17. 17.
    Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (1986)Google Scholar
  18. 18.
    Kwon, T.: Practical digital signature generation using biometrics. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 728–737. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Matyáš, V., Říha, Z.: Biometric authentication - security and usability, Manuscrypt available at
  20. 20.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography, pp. 287–291, 312–315. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  21. 21.
    Moon, H.: Performance Evaluation Methodology for Face Recognition Algorithms, Ph.D. Thesis, Dept. of Computer Science and Engineering, SUNY Buffalo (1999)Google Scholar
  22. 22.
    Palmer, R.C.: The Bar Code Book, 3rd edn. Helmers Publishing, Peterborough (1995)Google Scholar
  23. 23.
    Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)CrossRefGoogle Scholar
  24. 24.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Soutar, C.: Biometric system performance and security (2002), Manuscrypt available at
  26. 26.
    Soutar, C., Roberge, D., Stoianov, A., Golroy, R., Vijaya Kumar, B.: Biometric Encryption. In: ICSA Guide to Cryptography. McGraw-Hill, New York (1999), also available at Google Scholar
  27. 27.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  28. 28.
    U.S. DoS, USVISIT,
  29. 29.
    Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36(3) (May 1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Taekyoung Kwon
    • 1
  • Hyeonjoon Moon
    • 1
  1. 1.Sejong UniversitySeoulKorea

Personalised recommendations