Digging in the Details: A Case Study in Network Data Mining

  • John Galloway
  • Simeon J. Simoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3495)


Network Data Mining builds network linkages (network models) between myriads of individual data items and utilizes special algorithms that aid visualization of ‘emergent’ patterns and trends in the linkage. It complements conventional and statistically based data mining methods. Statistical approaches typically flag, alert or alarm instances or events that could represent anomalous behavior or irregularities because of a match with pre-defined patterns or rules. They serve as ‘exception detection’ methods where the rules or definitions of what might constitute an exception are able to be known and specified ahead of time. Many problems are suited to this approach. Many problems however, especially those of a more complex nature, are not well suited. The rules or definitions simply cannot be specified; there are no known suspicious transactions. This paper presents a human-centered network data mining methodology. A case study from the area of security illustrates the application of the methodology and corresponding data mining techniques. The paper argues that for many problems, a ‘discovery’ phase in the investigative process based on visualization and human cognition is a logical precedent to, and complement of, more automated ‘exception detection’ phases.


Data Mining Data Item Social Network Analysis Data Mining Technique Emergent Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Antonie, M.-L., Zaiane, O.R., et al.: Associative classifiers for medical images. In: Zaiane, O.R., Simoff, S.J., Djeraba, C. (eds.) Multimedia and Complex Data, pp. 68–83. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Borgatti, S.P.: The network paradigm in organizational research (2003)Google Scholar
  4. 4.
    A review and typology. Journal of Management 29(6), 991–1013Google Scholar
  5. 5.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, pp. 57–66. ACM Press, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  7. 7.
    Fayyad, U.M.: Editorial. ACM SIGKDD Explorations 5(2), 1–3 (2003)CrossRefGoogle Scholar
  8. 8.
    Fayyad, U.M., Piatetsky-Shapiro, G., et al.: From data mining to knowledge discovery: An overview. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI Press/The MIT Press, Cambridge (1996)Google Scholar
  9. 9.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  10. 10.
    Kempe, D., Kleinberg, J., et al.: Maximizing the spread of influence through a social network. In: Proceedings ACM KDD 2003, Washington, DC. ACM Press, New York (2003)Google Scholar
  11. 11.
    Klösgen, W., Zytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  12. 12.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings CIKM 2003, New Orleans, Louisiana, USA, November 3-8. ACM Press, New York (2003)Google Scholar
  13. 13.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nong, Y. (ed.): The Handbook of Data Mining. Lawrence Erlbaum Associates, Mahwah (2003)Google Scholar
  15. 15.
    Nong, Y.: Mining computer and network security data. In: Nong, Y. (ed.) The Handbook of Data Mining, pp. 617–636. Lawrence Erlbaum Associates, Mahwah (2003)Google Scholar
  16. 16.
    Ramoni, M.F., Sebastiani, P.: Bayesian methods for intelligent data analysis. In: Berthold, M., Hand, D.J. (eds.) Intelligent Data Analysis: An Introduction, pp. 131–168. Springer, New York (2003)CrossRefGoogle Scholar
  17. 17.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, pp. 61–70. ACM Press, New York (2002)CrossRefGoogle Scholar
  18. 18.
    Schön, D.: Educating The Reflective Practitioner. Jossey Bass, San Francisco (1991)Google Scholar
  19. 19.
    Schwartz, M.E., Wood, D.C.M.: Discovering shared interests using graph analysis. Communications of ACM 36(8), 78–89 (1993)CrossRefGoogle Scholar
  20. 20.
    Scott, J.: Social Network Analysis: A Handbook. Sage Publications, London (2000)Google Scholar
  21. 21.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  22. 22.
    Wong, P.C.: Visual Data Mining. IEEE Computer Graphics and Applications, 1–3 (September/October 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John Galloway
    • 1
    • 2
  • Simeon J. Simoff
    • 3
    • 4
  1. 1.Complex Systems Research CentreUniversity of Technology SydneyBroadwayAustralia
  2. 2.Chief Scientist, NetMap Analytics Pty LtdSt LeonardsAustralia
  3. 3.Faculty of Information TechnologyUniversity of Technology SydneyBroadwayAustralia
  4. 4.Electronic Markets Group, Institute for Information and Communication TechnologiesUniversity of Technology SydneyBroadwayAustralia

Personalised recommendations