Skip to main content

An Artificial Neural Network Model for Crop Yield Responding to Soil Parameters

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3498))

Included in the following conference series:

Abstract

This paper presents an artificial neural network model for crop yield responding to soil parameters. The experimental data had been obtained via a precision agriculture experiment, which is carried out by PAC in a demo farm locating in Shunyi district, Beijing in 2000. The model has been established by training a back propagation neural network with 58 samples and tested with other 14 samples. The model consists of 6, 11 and 1 processing units in the input, hidden and output layers, and the step length is 0.05, the momentum coefficient is 0.5. The training was terminated after 20000 times and the convergence effect was very good. The training results are that the correlation coefficient is 0.916 and the average error value is 2.8×10-2. It shows that the model can precisely describe crop yield responding to soil parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, M.: The Roadmap of ICT for Agriculture and Precision Farming In Less Developed Regions. In: 2004 CIGR International Conference, Beijing, China (2004)

    Google Scholar 

  2. Kuang, P.: The Precision Agricultural Development Approach of Developing Countries (Areas). In: 2004 CIGR International Conference, Beijing, China (2004)

    Google Scholar 

  3. Zhou, M., Chen, H.: Artificial Neural Network Model for Soil Moisture Forecast in Deficit Irrigation Rice Field. In: 2004 CIGR International Conference, Beijing, China (2004)

    Google Scholar 

  4. Huo, Z., Shi, H., Qiao, D.: Study on Artificial Neural Network Model for Crop Response to Soil Water-Salt. In: 2004 CIGR International Conference, Beijing, China (2004)

    Google Scholar 

  5. Zhang, X., Engel, B.A., Benady, N.: Locating Melons Using Artificial Neural Networks. ASAE Paper (1992)

    Google Scholar 

  6. Fraisse, C.W., Sudduth, K.A., Kitchen, N.R.: Evaluation of Crop Models to Simulate Site- Specific Crop Development and Yield. In: Proceedings of the 4th International Conference on Precision Agriculture, St. Paul, MN, pp. 1297–1308 (1998)

    Google Scholar 

  7. Zaidi, M.A., Murase, H.: Evaluation of Seeding Vigour Using Neural Network Model under Clinostated Conditions. In: International Conference on Agricultural and Science and Technology, Beijing, China, pp. 504–507 (2001)

    Google Scholar 

  8. Li, X., Qiao, X., Ye, T.: A New Fuzzy Neural Network Controller Applied in The Greenhouse. In: Progress of Information Technology in Agriculture, Beijing, China, pp. 546–549 (2003)

    Google Scholar 

  9. Liu, G., Kuang, J.: A Study on Spatial Variability of Soil Nutrient within Field. In: Proceedings of International Conference on Engineering and Technological Sciences, Beijing, China, pp. 189–193 (2000)

    Google Scholar 

  10. Yuan, H., Xiong, F.: A Novel Approach For Extracting Rules from Trained Neural Network. In: International Symposium on Intelligent Agricultural Information Technology, Beijing, China, pp. 305–309 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, G., Yang, X., Li, M. (2005). An Artificial Neural Network Model for Crop Yield Responding to Soil Parameters. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427469_161

Download citation

  • DOI: https://doi.org/10.1007/11427469_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25914-5

  • Online ISBN: 978-3-540-32069-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics