Advertisement

Parallel Smith-Waterman Algorithm for Local DNA Comparison in a Cluster of Workstations

  • Azzedine Boukerche
  • Alba Cristina Magalhaes Alves de Melo
  • Mauricio Ayala-Rincon
  • Thomas M. Santana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3503)

Abstract

Biological sequence comparison is one of the most important and basic problems in computational biology. Due to its high demands for computational power and memory, it is a very challenging task. Most of sequence comparison methods used are based on heuristics, which are faster but there are no guarantees that the best alignments will be produced. On the other hand, the algorithm proposed by Smith-Waterman obtains the best local alignments at the expense of very high computing power and huge memory requirements. In this article, we present and evaluate our experiments with three parallel strategies to run the Smith-Waterman algorithm in a cluster of workstations using a Distributed Shared Memory System. Our results on an eight-machine cluster presented very good speedups and indicate that impressive improvements can be achieved, depending on the strategy used. Also, we present some theoretical remarks on how to reduce the amount of memory used.

Keywords

Result Matrix Distribute Shared Memory Shared Memory System Local Sequence Alignment Distribute Shared Memory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology. Brooks/Cole Publishing Company (1997)Google Scholar
  2. 2.
    Smith, T.F., Waterman, M.S.: Identification of common molecular sub-sequences. Journal of Molecular Biology, 195–197 (1981)Google Scholar
  3. 3.
    Altschul, S.F., et al.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)CrossRefGoogle Scholar
  4. 4.
    Pearson, W.R., Lipman, D.L.: Improved tools for biological sequence comparison. In: Proc. National Academy Of Science, pp. 2444–2448. NAS (1988)Google Scholar
  5. 5.
    Martins, W.S., Del Cuvillo, J.B., Useche, F.J., Theobald, K.B., Gao, G.R.: A multithread parallel implementation of a dynamic programming algorithm for sequence comparison. In: Symp. on Computer Architecture and HPC (SBAC-PAD), pp. 1–8 (2001)Google Scholar
  6. 6.
    group, D.: Smith waterman homology search (2003)Google Scholar
  7. 7.
    Co., D.: Decypher smith waterman solution (2003)Google Scholar
  8. 8.
    Boukerche, A., Melo, A.C.M.A., Walter, M.E.M.T., Melo, R.C.F., Santana, M.N.P., Batista, R.B.: Performance evaluation of a local dna sequence alignment algorithm on a cluster of workstations. In: Proc. of the Int. Parallel and Distributed Processing Symposium (IPDPS 2004). IEEE Society, Los Alamitos (2004)Google Scholar
  9. 9.
    Batista, R.B., Silva, D.N., Melo, A.C.M.A., Weigang, L.: Using a dsm application to locally align dna sequences. In: Proc. of the IEEE/ACM Int. Symp. on Cluster Computing and the Grid. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  10. 10.
    Pfister, G.: Search of Clusters - The Coming Battle for Lowly Parallel Computing. Prentice-Hall, Englewood Cliffs (1995)Google Scholar
  11. 11.
    Melo, R., Walter, M.E.T., Melo, A.C.M.A., Batista, R.B.: Comparing two long dna sequences using a dsm system. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 517–524. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Mosberger, D.: Memory consistency models. Operating Systems Review, 18–26 (1993)Google Scholar
  13. 13.
    Hu, S., Shi, W., Tang, Z.: Jiajia: An svm system based on a new cache coherence protocol. In: High Performance Computing and Networking (HPCN), pp. 463–472. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Hirschberg, D.S.: Alagorithms for the longest common sequence problem. Journal of the ACM 24, 664–675 (1977)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Azzedine Boukerche
    • 1
  • Alba Cristina Magalhaes Alves de Melo
    • 2
  • Mauricio Ayala-Rincon
    • 3
  • Thomas M. Santana
    • 2
  1. 1.SITEUniversity of OttawaCanada
  2. 2.Department of Computer ScienceUniversity of Brasilia (UnB) 
  3. 3.Department of MathematicsUniversity of Brasilia (UnB) 

Personalised recommendations