Skip to main content

Efficient Convergence to Pure Nash Equilibria in Weighted Network Congestion Games

  • Conference paper
Book cover Experimental and Efficient Algorithms (WEA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3503))

Included in the following conference series:

Abstract

In large-scale or evolving networks, such as the Internet, there is no authority possible to enforce a centralized traffic management. In such situations, Game Theory and the concepts of Nash equilibria and Congestion Games [8] are a suitable framework for analyzing the equilibrium effects of selfish routes selection to network delays.

We focus here on layered networks where selfish users select paths to route their loads (represented by arbitrary integer weights). We assume that individual link delays are equal to the total load of the link. We focus on the algorithm suggested in [2], i.e. a potential-based method for finding pure Nash equilibria (PNE) in such networks. A superficial analysis of this algorithm gives an upper bound on its time which is polynomial in n (the number of users) and the sum of their weights. This bound can be exponential in n when some weights are superpolynomial. We provide strong experimental evidence that this algorithm actually converges to a PNE in strong polynomial time in n (independent of the weights values). In addition we propose an initial allocation of users to paths that dramatically accelerates this algorithm, compared to an arbitrary initial allocation. A by-product of our research is the discovery of a weighted potential function when link delays are exponential to their loads. This asserts the existence of PNE for these delay functions and extends the result of [2].

This work was partially supported by the EU within the Future and Emerging Technologies Programme under contract IST – 2001 – 33135 (CRESCCO) and within the 6th Framework Programme under contract 001907 (DELIS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: Proc. of the 36th ACM Symp. on Theory of Computing, (STOC 2004) (2004)

    Google Scholar 

  2. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Mehlhorn, K., Näher, S.: LEDA – A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and Economic Behavior 13, 111–124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Monderer, D., Shapley, L.: Potential Games. Games and Economic Behavior 14, 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nash, J.F.: Equilibrium Points in N-person Games. Proc. of National Academy of Sciences 36, 48–49 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rosenthal, R.W.: A Class of Games Poseessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panagopoulou, P.N., Spirakis, P.G. (2005). Efficient Convergence to Pure Nash Equilibria in Weighted Network Congestion Games. In: Nikoletseas, S.E. (eds) Experimental and Efficient Algorithms. WEA 2005. Lecture Notes in Computer Science, vol 3503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427186_19

Download citation

  • DOI: https://doi.org/10.1007/11427186_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25920-6

  • Online ISBN: 978-3-540-32078-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics