Towards LuxTrace: Using Solar Cells to Measure Distance Indoors

  • Julian Randall
  • Oliver Amft
  • Gerhard Tröster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3479)

Abstract

Navigation for and tracking of humans within a building usually implies significant infrastructure investment and devices are usually too high in weight and volume to be integrated into garments.

We propose a system that relies on existing infrastructure (so requires little infrastructure investment) and is based on a sensor that is low cost, low weight, low volume and can be manufactured to have similar characteristics to everyday clothing (flexible, range of colours).

This proposed solution is based on solar modules. This paper investigates their theoretical and practical characteristics in a simplified scenario. Two models based on theory and on experimental results (empirical model) are developed and validated.

First distance estimations indicate that an empirical model for a particular scenario achieves an accuracy of 18cm with a confidence of 83%.

Keywords

Solar Cell Radiant Energy Pervasive Computing Infrastructure Investment Solar Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishimura, T., Itoh, H., Nakamura, Y., Yamamoto, Y., Nakashima, H.: A compact battery-less information terminal for real world interaction. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 124–139. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Talking Lights: Talking Lights, Boston MA USA, http://www.talkinglights.com/how.htm
  3. 3.
    Fox, D.: Markov Localization: A Probabilistic Framework for Mobile Robot Localization and Navigation. PhD thesis, Institute of Computer Science TU Dreseden Germany (1998)Google Scholar
  4. 4.
    Want, R., Hopper, A.: Active badges and personal interactive computing objects. IEEE Transactions on Consumer Electronics 38(1), 10–20 (1992)CrossRefGoogle Scholar
  5. 5.
    Ward, M., Azuma, R., Bennett, R., Gottschalk, S., Fuchs, H.: A demonstrated optical tracker with scalable work area for head-hounted display systems. In: Proceedings of the symposium on Interactive 3D Graphics, pp. 43–52 (1992)Google Scholar
  6. 6.
    Evans, J., Chang, T., Hong, T., Bostelman, R., Bunch, W.: Three dimensional data capture in indoor environments for autonomous navigation, NIST Internal Report 6912. Technical report, http://www.isd.mel.nist.gov
  7. 7.
    Sorensen, B., Donath, M., Yang, G.B., Starr, R.: The Minnesota Scanner: a prototype sensor for three-dimensional tracking of moving body segments. IEEE Transactions on Robotics and Automation 5(4), 499–509Google Scholar
  8. 8.
    Piscataway, N.: Multi-camera multi-person tracking for Easy Living. In: 3rd IEEE Int’l Workshop on Visual Surveillance, pp. 3–10 (2000)Google Scholar
  9. 9.
    Thrun, S., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D., Haehnel, D., Rosenberg, C., Roy, N., Schulte, J., Schulz, D.: Minerva: A second generation mobile tour-guide robot. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA 1999 (1999)Google Scholar
  10. 10.
    Starner, T., Maguire, Y.: A heat dissipation tutorial for wearable computers. In: Digest of Papers (1998)Google Scholar
  11. 11.
    Zobel, M., Denzler, J., Heigl, B., Nöth, E., Paulus, D., Schmidt, J., Stemmer, G.: MOBSY: Integration of vision and dialogue in service robots. In: Schiele, B., Sagerer, G. (eds.) ICVS 2001. LNCS, vol. 2095, pp. 50–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Tauber, J.A.: Indoor location systems for pervasive computing. Technical report, Theory of Computation Group Massachusetts Institute of Technology (2002)Google Scholar
  13. 13.
    Vildjiounaite, E., Malm, E.-J., Kaartinen, J., Alahuhta, P.: Location estimation indoors by means of small computing power devices, accelerometers, magnetic sensors, and map knowledge. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 211–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personnel Communications 4(5), 42–47 (1997)CrossRefGoogle Scholar
  15. 15.
    Bahl, P., Padmanabhan, V.N.: Radar: An in-building RF-based user location and tracking system. In: INFOCOM, pp. 775–784 (2000)Google Scholar
  16. 16.
    Rabb, F.H., Blood, E., Steiner, T.O., Jones, H.R.: Magnetic position and orientation tracking system. IEEE Transaction on Aerospace and Electronic Systems, AES 15(5), 709–718 (1979)CrossRefGoogle Scholar
  17. 17.
    Lee, S.W., Mase, K.: A personal indoor navigation system using wearable sensors. In: Proceedings of The Second International Symposium of Mixed Reality (ISMR 2001), Yokohama (2001)Google Scholar
  18. 18.
    Randell, C., Muller, H.: Low cost indoor positioning system. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 42–48. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Starner, T., Kirsch, D., Assefa, S.: The Locust Swarm: An environmentallypowered, networkless location and messaging system. In: 1st International Symposium on Wearable Computers, pp. 169–170 (1997)Google Scholar
  20. 20.
    Amft, O., Lauffer, M., Ossevoort, S., Macaluso, F., Lukowicz, P., Tröster, G.: Design of the QBIC wearable computing platform. In: Proceedings of the 15th IEEE International Conference on Application-specific Systems, Architectures and Processors (2004)Google Scholar
  21. 21.
    Randall, J.: On the use of photovoltaic ambient energy sources for powering indoor electronic devices. PhD thesis, EPFL Lausanne Switzerland (2003)Google Scholar
  22. 22.
    Amft, O., Randall, J., Tröster, G.: Towards LuxTrace: Using solar cells to support human position tracking. In: Proceedings of Second International Forum on Applied Wearable Computing, Zrich, March 17-18, CH (2005) (to appear)Google Scholar
  23. 23.
    Hightower, J., Borriello, G.: A survey and taxonomy of location systems for ubiquitous computing. IEEE Computer 34(8), 57–66 (2001)Google Scholar
  24. 24.
    Pears, N.: Active triangulation rangefinder design for mobile robots. In: Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems (1992)Google Scholar
  25. 25.
    Pears, N.: An intelligent active range sensor for vehicle guidance: system overview. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (1996)Google Scholar
  26. 26.
    Janin, A.L., Zikan, K., Mizell, D., Banner, M., Sowizral, H.A.: Videometric head tracker for augmented reality applications. In: Das, H. (ed.) Proc. SPIE. Telemanipulator and Telepresence Technologies, vol. 2351, pp. 308–315 (1995)Google Scholar
  27. 27.
    VHF Technologies: Flexcell from VHF Technologies, Yverdon-les-Bains Switzerland, http://www.flexcell.ch

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Julian Randall
    • 1
  • Oliver Amft
    • 1
  • Gerhard Tröster
    • 1
  1. 1.Wearable Computing LaboratoryIfE, ETH ZürichSwitzerland

Personalised recommendations