Skip to main content

A Survey of the Merit Factor Problem for Binary Sequences

  • Conference paper
Sequences and Their Applications - SETA 2004 (SETA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3486))

Included in the following conference series:

Abstract

A classical problem of digital sequence design, first studied in the 1950s but still not well understood, is to determine those binary sequences whose aperiodic autocorrelations are collectively small according to some suitable measure. The merit factor is an important such measure, and the problem of determining the best value of the merit factor of long binary sequences has resisted decades of attack by mathematicians and communications engineers. In equivalent guise, the determination of the best asymptotic merit factor is an unsolved problem in complex analysis proposed by Littlewood in the 1960s that until recently was studied along largely independent lines. The same problem is also studied in theoretical physics and theoretical chemistry as a notoriously difficult combinatorial optimisation problem. The best known value for the asymptotic merit factor has remained unchanged since 1988. However recent experimental and theoretical results strongly suggest a possible improvement. This survey describes the development of our understanding of the merit factor problem by bringing together results from several disciplines, and places the recent results within their historical and scientific framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antweiler, M., Bömer, L.: Merit factor of Chu and Frank sequences. Electron. Lett. 26, 2068–2070 (1990)

    Article  Google Scholar 

  2. Barker, R.H.: Group synchronizing of binary digital systems. In: Jackson, W. (ed.) Communication Theory, pp. 273–287. Academic Press, New York (1953)

    Google Scholar 

  3. Baumert, L.D.: Cyclic Difference Sets. Lecture Notes in Mathematics, vol. 182. Springer, New York (1971)

    MATH  Google Scholar 

  4. Beenker, G.F.M., Claasen, T.A.C.M., Hermens, P.W.C.: Binary sequences with a maximally flat amplitude spectrum. Philips J. Res. 40, 289–304 (1985)

    MATH  Google Scholar 

  5. Bernasconi, J.: Low autocorrelation binary sequences: statistical mechanics and configuration state analysis. J. Physique 48, 559–567 (1987)

    Article  Google Scholar 

  6. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn., vol. I, II. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  7. Boehmer, A.M.: Binary pulse compression codes. IEEE Trans. Inform. Theory, IT-13, 156–167 (1967)

    Google Scholar 

  8. Bömer, L., Antweiler, M.: Optimizing the aperiodic merit factor of binary arrays. Signal Processing 30, 1–13 (1993)

    Article  MATH  Google Scholar 

  9. Borwein, J., Bailey, D.: Mathematics by Experiment: Plausible Reasoning in the 21st Century. A.K. Peters, Natick (2004)

    MATH  Google Scholar 

  10. Borwein, P.: Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics. Springer, New York (2002)

    MATH  Google Scholar 

  11. Borwein, P., Choi, K.-K.S.: Merit factors of polynomials formed by Jacobi symbols. Canad. J. Math. 53, 33–50 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Borwein, P., Choi, K.-K.S.: Explicit merit factor formulae for Fekete and Turyn polynomials. Trans. Amer. Math. Soc. 354, 219–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Borwein, P., Choi, K.-K.S., Jedwab, J.: Binary sequences with merit factor greater than 6.34. IEEE Trans. Inform. Theory 50, 3234–3249 (2004)

    Article  MathSciNet  Google Scholar 

  14. Borwein, P., Ferguson, R., Knauer, J.: The merit factor of binary sequences (in preparation)

    Google Scholar 

  15. Borwein, P., Mossinghoff, M.: Rudin-Shapiro-like polynomials in L 4. Math. of Computation 69, 1157–1166 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brglez, F., Li, X.Y., Stallman, M.F., Militzer, B.: Evolutionary and alternative algorithms: reliable cost predictions for finding optimal solutions to the LABS problem. Information Sciences (2004) (to appear)

    Google Scholar 

  17. Choi, K.-K.S.: Extremal problems about norms of Littlewood polynomials (2004) (preprint)

    Google Scholar 

  18. Cohen, M.N., Fox, M.R., Baden, J.M.: Minimum peak sidelobe pulse compression codes. In: IEEE International Radar Conference, pp. 633–638. IEEE, Los Alamitos (1990)

    Chapter  Google Scholar 

  19. Coxson, G.E., Hirschel, A., Cohen, M.N.: New results on minimum-PSL binary codes. In: IEEE Radar Conference, pp. 153–156. IEEE, Los Alamitos (2001)

    Google Scholar 

  20. Davis, J.A., Jedwab, J.: A survey of Hadamard difference sets. In: Arasu, K.T., et al. (eds.) Groups, Difference Sets and the Monster, pp. 145–156. de Gruyter, Berlin-New York (1996)

    Google Scholar 

  21. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inform. Theory 45, 2397–2417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. de Groot, C., Würtz, D., Hoffmann, K.H.: Low autocorrelation binary sequences: exact enumeration and optimization by evolutionary strategies. Optimization 23, 369–384 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. de Oliveira, V.M., Fontanari, J.F., Stadler, P.F.: Metastable states in high order short-range spin glasses. J. Phys. A: Math. Gen. 32, 8793–8802 (1999)

    Article  MATH  Google Scholar 

  24. Erdös, P.: Some unsolved problems. Mich. Math. J. 4, 291–300 (1957)

    Article  Google Scholar 

  25. Erdös, P.: An inequality for the maximum of trigonometric polynomials. Ann. Polon. Math. 12, 151–154 (1962)

    MATH  MathSciNet  Google Scholar 

  26. Fan, P., Darnell, M.: Sequence Design for Communications Applications. In: Communications Systems, Techniques and Applications. Research Studies Press, Taunton (1996)

    Google Scholar 

  27. Ferreira, F.F., Fontanari, J.F., Stadler, P.F.: Landscape statistics of the low autocorrelated binary string problem. J. Phys. A: Math. Gen. 33, 8635–8647 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Golay, M.J.E.: Multislit spectroscopy. J. Opt. Soc. Amer. 39, 437–444 (1949)

    Article  Google Scholar 

  29. Golay, M.J.E.: Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Amer. 41, 468–472 (1951)

    Article  Google Scholar 

  30. Golay, M.J.E.: A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inform. Theory, IT-18, 449–450 (1972)

    Google Scholar 

  31. Golay, M.J.E.: Hybrid low autocorrelation sequences. IEEE Trans. Inform. Theory, IT-21, 460–462 (1975)

    Google Scholar 

  32. Golay, M.J.E.: Sieves for low autocorrelation binary sequences. IEEE Trans. Inform. Theory, IT-23, 43–51 (1977)

    Google Scholar 

  33. Golay, M.J.E.: The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inform. Theory, IT-28, 543–549 (1982)

    Google Scholar 

  34. Golay, M.J.E.: The merit factor of Legendre sequences. IEEE Trans. Inform. Theory, IT-29, 934–936 (1983)

    Google Scholar 

  35. Golay, M.J.E., Harris, D.B.: A new search for skewsymmetric binary sequences with optimal merit factors. IEEE Trans. Inform. Theory 36, 1163–1166 (1990)

    Article  Google Scholar 

  36. Golomb, S.W.: Shift Register Sequences. Aegean Park Press, California (1982) (revised edition)

    Google Scholar 

  37. Helleseth, T., Kumar, P.V., Martinsen, H.: A new family of ternary sequences with ideal two-level autocorrelation function. Designs, Codes and Cryptography 23, 157–166 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Høholdt, T.: The merit factor of binary sequences. In: Pott, A., et al. (eds.) Difference Sets, Sequences and Their Correlation Properties. NATO Science Series C, vol. 542, pp. 227–237. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  39. Høholdt, T., Jensen, H.E.: Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory 34, 161–164 (1988)

    Article  Google Scholar 

  40. Høholdt, T., Jensen, H.E., Justesen, J.: Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory, IT 31, 549–552 (1985)

    Article  Google Scholar 

  41. Jensen, H.E., Høholdt, T.: Binary sequences with good correlation properties. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 306–320. Springer, Heidelberg (1989)

    Google Scholar 

  42. Jensen, J.M., Jensen, H.E., Høholdt, T.: The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37, 617–626 (1991)

    Article  MathSciNet  Google Scholar 

  43. Kahane, J.-P.: Sur les polynômes á coefficients unimodulaires. Bull. London Math. Soc. 12, 321–342 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kirilusha, A., Narayanaswamy, G.: Construction of new asymptotic classes of binary sequences based on existing asymptotic classes. Summer Science Program Technical Report, Dept. Math. Comput. Science, University of Richmond (July 1999)

    Google Scholar 

  45. Knauer, J.: Merit Factor Records. Online, Available, http://www.cecm.sfu.ca/~jknauer/labs/records.html (November 2004)

  46. Kristiansen, R.A.: On the Aperiodic Autocorrelation of Binary Sequences. Master’s thesis, University of Bergen (March 2003)

    Google Scholar 

  47. Kristiansen, R.A., Parker, M.G.: Binary sequences with merit factor > 6.3. IEEE Trans. Inform. Theory 50, 3385–3389 (2004)

    Article  MathSciNet  Google Scholar 

  48. Leung, K.H., Ma, S.L., Schmidt, B.: Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders. Trans. Amer. Math. Soc. 356, 4343–4358 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Leung, K.H., Schmidt, B.: The field descent method. Designs, Codes and Cryptography (to appear)

    Google Scholar 

  50. Lindholm, J.H.: An analysis of the pseudo-randomness properties of subsequences of long m-sequences. IEEE Trans. Inform. Theory, IT 14, 569–576 (1968)

    Article  Google Scholar 

  51. Lindner, J.: Binary sequences up to length 40 with best possible autocorrelation function. Electron. Lett. 11, 507 (1975)

    Article  Google Scholar 

  52. Littlewood, J.E.: On the mean values of certain trigonometrical polynomials. J. London Math. Soc. 36, 307–334 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  53. Littlewood, J.E.: On polynomials ∑ n ±z m, \(\sum^n e^{{\alpha_m}i}z^m\), z = e θi. J. London Math. Soc. 41, 367–376 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  54. Littlewood, J.E.: Some Problems in Real and Complex Analysis. Heath Mathematical Monographs. D.C. Heath and Company, Massachusetts (1968)

    Google Scholar 

  55. Lunelli, L.: Tabelli di sequenze ( +1, −1) con autocorrelazione troncata non maggiore di 2. Politecnico di Milano (1965)

    Google Scholar 

  56. Ma, S.L.: A survey of partial difference sets. Designs, Codes and Cryptography 4, 221–261 (1994)

    Article  MATH  Google Scholar 

  57. Massey, J.L.: Marcel J.E. Golay (1902-1989). Obituary. IEEE Information Theory Society Newsletter (June 1990)

    Google Scholar 

  58. Mertens, S.: Exhaustive search for low-autocorrelation binary sequences. J. Phys. A: Math. Gen. 29, L473–L481 (1996)

    Article  MathSciNet  Google Scholar 

  59. Mertens, S., Bauke, H.: Ground States of the Bernasconi Model with Open Boundary Conditions. Online. Available (November 2004), http://odysseus.nat.uni-magdeburg.de/~mertens/bernasconi/open.dat

  60. Militzer, B., Zamparelli, M., Beule, D.: Evolutionary search for low autocorrelated binary sequences. IEEE Trans. Evol. Comput. 2, 34–39 (1998)

    Article  Google Scholar 

  61. Moon, J.W., Moser, L.: On the correlation function of random binary sequences. SIAM J. Appl. Math. 16, 340–343 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  62. Newman, D.J., Byrnes, J.S.: The L 4 norm of a polynomial with coefficients ±1. Amer. Math. Monthly 97, 42–45 (1990)

    Article  MathSciNet  Google Scholar 

  63. Parker, M.G.: Even length binary sequence families with low negaperiodic autocorrelation. In: Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 200–210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  64. Paterson, K.G.: Applications of exponential sums in communications theory. In: Walker, M. (ed.) Cryptography and Coding 1999. LNCS, vol. 1746, pp. 1–24. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  65. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44, 3–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  66. Rudin, W.: Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10, 855–859 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  67. Ryser, H.J.: Combinatorial Mathematics. Carus Mathematical Monographs No. 14. Mathematical Association of America, Washington, DC (1963)

    Google Scholar 

  68. Sarwate, D.V.: Mean-square correlation of shift-register sequences. IEE Proceedings Part F 131, 101–106 (1984)

    Google Scholar 

  69. Schroeder, M.R.: Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans. Inform. Theory, IT 16, 85–89 (1970)

    Article  Google Scholar 

  70. Shapiro, H.: Harold Shapiro’s Research Interests. Online. Available (November 2004), http://www.math.kth.se/~shapiro/profile.html

  71. Shapiro, H.S.: Extremal Problems for Polynomials and Power Series. Master’s thesis, Mass. Inst. of Technology (1951)

    Google Scholar 

  72. Turyn, R., Storer, J.: On binary sequences. Proc. Amer. Math. Soc. 12, 394–399 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  73. Turyn, R.J.: Character sums and difference sets. Pacific J. Math. 15, 319–346 (1965)

    MATH  MathSciNet  Google Scholar 

  74. Turyn, R.J.: Sequences with small correlation. In: Mann, H.B. (ed.) Error Correcting Codes, pp. 195–228. Wiley, New York (1968)

    Google Scholar 

  75. Xiang, Q.: Recent results on difference sets with classical parameters. In: Pott, A., et al. (eds.) Difference Sets, Sequences and Their Correlation Properties. NATO Science Series C, vol. 542, pp. 419–437. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jedwab, J. (2005). A Survey of the Merit Factor Problem for Binary Sequences. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_2

Download citation

  • DOI: https://doi.org/10.1007/11423461_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26084-4

  • Online ISBN: 978-3-540-32048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics