Advertisement

Controlled Experimentation with Agents — Models and Implementations

  • Mathias Röhl
  • Adelinde M. Uhrmacher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3451)

Abstract

The deployment of multi-agent systems demands for justified confidence into their functioning, both with respect to correctness of behaviour and with respect to timeliness thereof. Depending on the stage of the development process different mechanisms and abstractions are needed to facilitate the evaluation of interacting agents. We propose a modelling and simulation framework based on a discrete-event formalism for supporting the development process of multi-agent systems; from specification to implementation. The framework allows for the incremental refinement of agents and experimental set-ups while providing rigorous observation facilities. The benefit of using discrete-event modelling and simulation techniques for evaluating agents is illustrated using a simple example based on the Contract Net Protocol.

Keywords

Virtual Environment Atomic Model Wall Clock Time External Process Temporal Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engineering: the Tropos project. Information Systems 27, 365–389 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Agent UML: A formalism for specifying multiagent software systems. In: Giunchiglia, F., Odell, J., Weiss, G. (eds.) Agent-Oriented Software Engineering III. LNCS, vol. 2585, pp. 16–31. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    van der Hoek, W., Wooldrige, M.: Towards a logic of rational agency. Journal of Autonomous Agents and Multi-Agent Systems 11, 133–157 (2003)Google Scholar
  4. 4.
    Ryan, M., Schobbens, P.Y.: Agents and roles: Refinement in alternating-time temporal logic. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 100–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Wooldridge, M., Jennings, N.R.: Pitfalls of agent-oriented development. In: Proceedings of the 2nd International Conference on Autonomous Agents, pp. 385–391 (1998)Google Scholar
  6. 6.
    Dam, K.H., Winikoff, M.: Comparing agent-oriented methodologies. In: Proceedings of the Fifth International Bi-Conference Workshop on Agent-Oriented Information Systems, Melbourne (2003)Google Scholar
  7. 7.
    Hilaire, V., Koukam, A., Gruer, P., Müller, J.P.: Formal specification and prototyping of multi-agent systems. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000. LNCS (LNAI), vol. 1972, pp. 114–127. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Moro, G., Viroli, M.: On observing and constraining active systems. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000. LNCS (LNAI), vol. 1972, pp. 34–51. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Wooldridge, M.: The computational complexity of agent design problems. In: Proceedings of the Fourth International Conference of Multi-Agent Systems (ICMAS 2000), Boston, pp. 341–348 (2000)Google Scholar
  10. 10.
    Lutz, R.: Software engineering for safety: A roadmap. In: Finkelstein, A. (ed.) ICSE - Future of SE Track, pp. 213–224. ACM Press, New York (2000)Google Scholar
  11. 11.
    Schütz, W.: The testability of distributed real-time systems. Kluwer Academic Publishers, Boston (1993)zbMATHGoogle Scholar
  12. 12.
    Myers, G.J.: The Art of Software Testing. John Wiley & Sons, Inc., Chichester (1979)Google Scholar
  13. 13.
    Wolpert, D.H., Lawson, J.W.: Designing agent collectives for systems with markovian dynamics. In: AAMAS 2002: Autonomous Agents and Multi-Agent Systems (2002)Google Scholar
  14. 14.
    Montgomery, T.A., Durfee, E.H.: Using MICE to Study Intelligent Dynamic Coordination. In: Second International Conference on Tools for Artificial Intelligence. Institute of Electrical and Electronics Engineers, Washington, DC, pp. 438–444 (1990)Google Scholar
  15. 15.
    Pollack, M.E.: Planning in Dynamic Environments: The DIPART System. In: Tate, A. (ed.) Advanced Planning Technology. AAAI, Menlo Park (1996)Google Scholar
  16. 16.
    Minsky, M.: Models, minds, machines. In: Proc. IFIP Congress, pp. 45–49 (1965)Google Scholar
  17. 17.
    Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic Press, London (1984)zbMATHGoogle Scholar
  18. 18.
    Zeigler, B.P.: Theory of Modelling and Simulation. John Wiley, New York (1976)zbMATHGoogle Scholar
  19. 19.
    Vangheluwe, H.: DEVS as a common denominator for multi-formalism hybrid system modeling. In: Proceedings of the IEEE International Symposium on Computer Aided Control System Design, Anchorage, Alaska, pp. 129–134 (2000)Google Scholar
  20. 20.
    Giambiasi, N., Paillet, J.L., Châne, F.: From timed automata to DEVS models. In: Chick, S., Sánchez, P., Ferrin, D., Morrice, D. (eds.) Proceedings of the 2003 Winter Simulation Conference, New Orleans, USA, pp. 923–931 (2003)Google Scholar
  21. 21.
    Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, 2nd edn. Academic Press, London (2000)Google Scholar
  22. 22.
    Fujimoto, R.M.: Parallel and Distributed Simulation Systems. John Wiley and Sons, Chichester (2000)Google Scholar
  23. 23.
    Uhrmacher, A.M.: Dynamic Structures in Modeling and Simulation - a Reflective Approach. ACM Transactions on Modeling and Simulation 11, 206–232 (2001)CrossRefGoogle Scholar
  24. 24.
    Schattenberg, B., Uhrmacher, A.M.: Planning agents in James. Proceedings of the IEEE 89, 158–173 (2001)CrossRefGoogle Scholar
  25. 25.
    FIPA: FIPA Contract Net Interaction Protocol Specification (2002), http://www.fipa.org/specs/fipa00029
  26. 26.
    Anderson, S.D.: Simulation of multiple time-pressured agents. In: Proc. of the Wintersimulation Conference, WSC 1997, Atlanta (1997)Google Scholar
  27. 27.
    Browne, S., Dongarra, J., Garner, N., Ho, G.S., Mucci, P.: A portable programming interface for performance evaluation on modern processors. The International Journal of High Performance Computing Applications 14, 189–204 (2000)CrossRefGoogle Scholar
  28. 28.
    Dagenring, D., Röhl, M., Uhrmacher, A.M.: Discrete event, multi-level simulation of metabolite channeling. BioSystems 75, 29–41 (2004)CrossRefGoogle Scholar
  29. 29.
    Uhrmacher, A.M., Röhl, M., Kullick, B.: The role of reflection in simulating and testing agents: An exploration based on the simulation system james. Applied Artificial Intelligence 16, 795–811 (2002)CrossRefGoogle Scholar
  30. 30.
    Himmelspach, J., Röhl, M., Uhrmacher, A.: Simulation for Testing Software Agents – An Exploration Based on James. In: Chick, S., Sánchez, P., Ferrin, D., Morrice, D. (eds.) Proceedings of the 2003 Winter Simulation Conference, New Orleans, USA, pp. 799–807 (2003)Google Scholar
  31. 31.
    Ewert, U.C., Röhl, M., Uhrmacher, A.M.: What good are deliberative interventions in large scale disasters? Exploring the consequences of crisis managment in pre-modern towns with agent-oriented simulation. In: Agent Based Computational Demography. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mathias Röhl
    • 1
  • Adelinde M. Uhrmacher
    • 1
  1. 1.Department of Computer Science and Electrical EngineeringUniversity of RostockRostockGermany

Personalised recommendations