RIBRA–An Error-Tolerant Algorithm for the NMR Backbone Assignment Problem

  • Kuen-Pin Wu
  • Jia-Ming Chang
  • Jun-Bo Chen
  • Chi-Fon Chang
  • Wen-Jin Wu
  • Tai-Huang Huang
  • Ting-Yi Sung
  • Wen-Lian Hsu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3500)


We develop an iterative relaxation algorithm, called RIBRA, for NMR protein backbone assignment. RIBRA applies nearest neighbor and weighted maximum independent set algorithms to solve the problem. To deal with noisy NMR spectral data, RIBRA is executed in an iterative fashion based on the quality of spectral peaks. We first produce spin system pairs using the spectral data without missing peaks, then the data group with one missing peak, and finally, the data group with two missing peaks. We test RIBRA on two real NMR datasets: hb-SBD and hbLBD, and perfect BMRB data (with 902 proteins) and four synthetic BMRB data which simulate four kinds of errors. The accuracy of RIBRA on hbSBD and hbLBD are 91.4% and 83.6%, respectively. The average accuracy of RIBRA on perfect BMRB datasets is 98.28%, and 98.28%, 95.61%, 98.16% and 96.28% on four kinds of synthetic datasets, respectively.


Nuclear Magnetic Resonance Spin System Synthetic Dataset Amino Acid Type Backbone Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atreya, H.S., Sahu, S.C., Chary, K.V.R., Govil, G.: A tracked approach for automated NMR assignments in proteins (TATAPRO). J. Biomol. Nmr. 17, 125–136 (2000)CrossRefGoogle Scholar
  2. 2.
    Atreya, H.S., Chary, K.V.R., Govil, G.: Automated NMR assignments of proteins for high throughput structure determination: TATAPRO II. Curr. Sci. India 83, 1372–1376 (2002)Google Scholar
  3. 3.
    Bailey-Kellogg, C., Widge, A., Kelley, J.J., Berardi, M.J., Bushweller, J.H., Donald, B.R.: The NOESY Jigsaw: Automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. J. Comput. Biol. 7, 537–558 (2000)CrossRefGoogle Scholar
  4. 4.
    Bailey-Kellogg, C., Chainraj, S., Pandurangan, G.: A Random Graph Approach to NMR Sequential Assignment. In: The Eighth Annual International Conference on Research in Computational Molecular Biology (RECOMB 2004), pp. 58–67 (2004)Google Scholar
  5. 5.
    Bartels, C., Guntert, P., Billeter, M., Wuthrich, K.: GARANT–A general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J. Comput. Chem. 18, 139–149 (1997)CrossRefGoogle Scholar
  6. 6.
    Boppana, R., Halldorsson, M.M.: Approximating Maximum Independent Sets by Excluding Subgraphs. Bit 32, 180–196 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Buchler, N.E.G., Zuiderweg, E.R.P., Wang, H., Goldstein, R.A.: Protein heteronuclear NMR assignments using mean-field simulated annealing. J. Magn. Reson. 125, 34–42 (1997)CrossRefGoogle Scholar
  8. 8.
    Chang, C.F., Chou, H.T., Chuang, J.L., Chuang, D.T., Huang, T.H.: Solution structure and dynamics of the lipoic acid-bearing domain of human mitochondrial branched-chain alpha-keto acid dehydrogenase complex. J. Biol. Chem. 277, 15865–15873 (2002)CrossRefGoogle Scholar
  9. 9.
    Chen, Z.Z., Jiang, T., Lin, G.H., Wen, J.J., Xu, D., Xu, Y.: Improved approximation algorithms for NMR spectral peak assignment. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 82–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Chen, Z.Z., Jiang, T., Lin, G.H., Wen, J.J., Xu, D., Xu, J.B., Xu, Y.: Approximation algorithms for NMR spectral peak assignment. Theor. Comput. Sci. 299, 211–229 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Coggins, B.E., Zhou, P.: PACES: Protein sequential assignment by computer-assisted exhaustive search. J. Biomol. Nmr. 26, 93–111 (2003)CrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computer and Intractability: A guide to the Theory of NP-completeness. W.H. Freeman and Co., New York (1979)Google Scholar
  13. 13.
    Guntert, P., Salzmann, M., Braun, D., Wuthrich, K.: Sequence-specific NMR assignment of proteins by global fragment mapping with the program MAPPER. J. Biomol. Nmr. 18, 129–137 (2000)CrossRefGoogle Scholar
  14. 14.
    Hitchens, T.K., Lukin, J.A., Zhan, Y.P., McCallum, S.A., Rule, G.S.: MONTE: An automated Monte Carlo based approach to nuclear magnetic resonance assignment of proteins. J. Biomol. Nmr. 25, 1–9 (2003)CrossRefGoogle Scholar
  15. 15.
    Hyberts, S.G., Wagner, G.: IBIS–A tool for automated sequential assignment of protein spectra from triple resonance experiments. J. Biomol. Nmr. 26, 335–344 (2003)CrossRefGoogle Scholar
  16. 16.
    Langmead, C.J., Yan, A., Lilien, R., Wang, L., Donald, B.R.: Large a polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments. In: The Seventh Annual International Conference on Research in Computational Molecular Biology, RECOMB 2003 (2003)Google Scholar
  17. 17.
    Leutner, M., Gschwind, R.M., Liermann, J., Schwarz, C., Gemmecker, G., Kessler, H.: Automated backbone assignment of labeled proteins using the threshold accepting algorithm. J. Biomol. Nmr. 11, 31–43 (1998)CrossRefGoogle Scholar
  18. 18.
    Li, K.B., Sanctuary, B.C.: Automated resonance assignment of proteins using heteronuclear 3D NMR. Backbone spin systems extraction and creation of polypeptides. J. Chem. Inf. Comp. Sci. 37, 359–366 (1997)Google Scholar
  19. 19.
    Lin, G.H., Xu, D., Chen, Z.Z., Jiang, T., Wen, J.J., Xu, Y.: An efficient branch-and-bound algorithm for the assignment of protein backbone NMR peaks. In: Proceedings of the First IEEE Computer Society Bioinformatics Conference (CSB 2002), pp. 165–174 (2002)Google Scholar
  20. 20.
    Lukin, J.A., Gove, A.P., Talukdar, S.N., Ho, C.: Automated probabilistic method for assigning backbone resonances of (13C, 15N)-labeled proteins. J. Biomol. NMR. 9, 151–166 (1997)CrossRefGoogle Scholar
  21. 21.
    Malmodin, D., Papavoine, C.H.M., Billeter, M.: Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. J. Biomol. Nmr. 27, 69–79 (2003)CrossRefGoogle Scholar
  22. 22.
    Moseley, H.N.B., Montelione, G.T.: Automated analysis of NMR assignments and structures for proteins. Curr. Opin. Struc. Biol. 9, 635–642 (1999)CrossRefGoogle Scholar
  23. 23.
    Ou, H.D., Lai, H.C., Serber, Z., Dotsch, V.: Efficient identification of amino acid types for fast protein backbone assignments. J. Biomol. Nmr. 21, 269–273 (2001)CrossRefGoogle Scholar
  24. 24.
    Slupsky, C.M., Boyko, R.F., Booth, V.K., Sykes, B.D.: Smartnotebook: A semi-automated approach to protein sequential NMR resonance assignments. J. Biomol. Nmr. 27, 313–321 (2003)CrossRefGoogle Scholar
  25. 25.
    Wang, X., Xu, D., Slupsky, C.M., Lin, G.H.: Automated Protein NMR Resonance Assignments. In: Proceedings of the Second IEEE Computer Society Bioinformatics Conference (CSB 2003), pp. 197–208 (2003)Google Scholar
  26. 26.
    Xu, Y., Xu, D., Kim, D., Olman, V., Razumovskaya, J., Jiang, T.: Automated assignment of backbone NMR peaks using constrained bipartite matching. Comput. Sci. Eng. 4, 50–62 (2002)Google Scholar
  27. 27.
    Zimmerman, D.E., Kulikowski, C.A., Huang, Y.P., Feng, W.Q., Tashiro, M., Shimotakahara, S., Chien, C.Y., Powers, R., Montelione, G.T.: Automated analysis of protein NMR assignments using methods from artificial intelligence. J. Mol. Biol. 269, 592–610 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kuen-Pin Wu
    • 1
  • Jia-Ming Chang
    • 1
  • Jun-Bo Chen
    • 1
  • Chi-Fon Chang
    • 2
  • Wen-Jin Wu
    • 3
  • Tai-Huang Huang
    • 2
    • 3
  • Ting-Yi Sung
    • 1
  • Wen-Lian Hsu
    • 1
  1. 1.Institute of Information ScienceAcademia SinicaTaiwan
  2. 2.Genomics Research CenterAcademia SinicaTaiwan
  3. 3.Institute of Biomedical SciencesAcademia SinicaTaiwan

Personalised recommendations