Skip to main content

A Hybrid Micro-Macroevolutionary Approach to Gene Tree Reconstruction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3500))

Abstract

Gene family evolution is determined by microevolutionary processes (e.g., point mutations) and macroevolutionary processes (e.g., gene duplication and loss), yet macroevolutionary considerations are rarely incorporated into gene phylogeny reconstruction methods. We present a dynamic program to find the most parsimonious gene family tree with respect to a macroevolutionary optimization criterion, the weighted sum of the number of gene duplications and losses. The existence of a polynomial time algorithm for duplication/loss phylogeny reconstruction stands in contrast to most formulations of phylogeny reconstruction, which are NP-complete.

We next extend this result to obtain a two-phase method for gene tree reconstruction that takes both micro- and macroevolution into account. In the first phase, a gene tree is constructed from sequence data, using any of the previously known algorithms for gene phylogeny construction. In the second phase, the tree is refined by rearranging regions of the tree that do not have strong support in the sequence data to minimize the duplication/lost cost. Components of the tree with strong support are left intact. This hybrid approach incorporates both micro- and macroevolutionary considerations, yet its computational requirements are modest in practice because the two phase approach constrains the search space.

We have implemented these algorithms in a software tool, Notung 2.0, that can be used as a unified framework for gene tree reconstruction or as an exploratory analysis tool that can be applied post hoc to any rooted tree with bootstrap values. also has a new graphical user interface and can be used to visualize alternate duplication/loss histories, root trees according to duplication and loss parsimony, manipulate and annotate gene trees and estimate gene duplication times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvestad, L., Berglund, A.-C., Lagergren, J., Sennblad, B.: Bayesian gene/species tree reconciliation and orthology analysis using MCMC. Bioinformatics 19(suppl. 1), i7–i15 (2003)

    Article  Google Scholar 

  2. Arvestad, L., Berglund, A.-C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: Proceedings of the Eighth Annual International Conference on Computational Molecular Biology, pp. 326–335. ACM Press, New York (2004)

    Google Scholar 

  3. Chen, K., Durand, D., Farach-Colton, M.: Notung: A program for dating gene duplications and optimizing gene family trees. Journal of Computational Biology 7(3/4), 429–447 (2000)

    Article  Google Scholar 

  4. Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 296–310. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cintron, R., Nicholas Jr., H.B., Ferrer, I., Gonzalez, R., Vernot, B., Durand, D., Serrano, A.E.: The ABC superfamily: Evolutionary implications for drug resistance in extitPlasmodia. In: Functional Genomics and Bioinformatics Approaches to Infectious Disease Research. American Society for Microbiology (2004) (abstract book)

    Google Scholar 

  6. Day, W.H.: Computational complexity of inferring phylogenies from dissimilarity matrices. Bull. Math. Biol. 49(4), 461–467 (1987)

    MATH  MathSciNet  Google Scholar 

  7. Day, W.H.E., Johnson, D.S., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Math. Biosci. 81(33), 33–42 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Efron, B., Gong, G.: A leisurely look at the bootstrap, jackknife, and cross-validation. The American Statistician 37(1), 36–48 (1983)

    Article  MathSciNet  Google Scholar 

  9. Eulenstein, O., Mirkin, B., Vingron, M.: Comparison of a annotating duplication, tree mapping, and copying as methods to compare gene trees with species trees. In: Mathematical Hierarchies and Biology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 37, pp. 71–93 (1996)

    Google Scholar 

  10. Eulenstein, O., Mirkin, B., Vingron, M.: Duplication-based measures of difference between gene and species trees. Journal of Computational Biology 5, 135–148 (1998)

    Article  Google Scholar 

  11. Felsenstein, J.: Inferring Phylogenies, ch. 29, p. 514. Sinauer (2003)

    Google Scholar 

  12. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

    Article  Google Scholar 

  13. Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient phylogenies. Molecular Phylogenetics and Evolution 6, 189–213 (1996)

    Article  Google Scholar 

  14. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: RECOMB 2000, Fourth Annual International Conference on Computational Molecular Biology (2000)

    Google Scholar 

  15. Hughes, A.L.: Phylogenetic tests of the hypothesis of block duplication of homologous genes on human chromosomes 6, 9, and 1. MBE 15(7), 854–870 (1998)

    Google Scholar 

  16. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. on Comput (2000)

    Google Scholar 

  17. Mirkin, B., Muchnik, I., Smith, T.F.: A biologically consistent model for comparing molecular phylogenies. Journal of Computational Biology 2, 493–507 (1995)

    Article  Google Scholar 

  18. The Newick tree format (1986), http://evolution.genetics.washington.edu/phylip/newicktree.html

  19. Page, R.D.: GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14(9), 819–820 (1998)

    Article  Google Scholar 

  20. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms and areas. Syst. Zool. 43, 58–77 (1994)

    Google Scholar 

  21. Page, R.D.M., Charleston, M.A.: Reconciled trees and incongruent gene and species trees. In: Mathematical Heirarchies and Biology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 37, pp. 57–70 (1996)

    Google Scholar 

  22. Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: Reconciled trees and the gene tree/species tree problem. Molecular Phylogenetics and Evolution 7, 231–240 (1997)

    Article  Google Scholar 

  23. Page, R.D.M., Charleston, M.A.: Trees within trees: phylogeny and historical associations. Trends in Ecology and Evolution 13(9), 356–359 (1998)

    Article  Google Scholar 

  24. Pebusque, M.-J., Coulier, F., Birnbaum, D., Pontarotti, P.: Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. MBE 15(9), 1145–1159 (1998)

    Google Scholar 

  25. Ruvinsky, I., Silver, L.M.: Newly indentified paralogous groups on mouse chromosomes 5 and 11 reveal the age of a t-box cluster duplication. Genomics 40, 262–266 (1997)

    Article  Google Scholar 

  26. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)

    Google Scholar 

  27. Sheehan, D., Meade, G., Foley, V.M., Dowd, C.A.: Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360(Pt 1), 1–16 (2001)

    Article  Google Scholar 

  28. Stege, U.: Gene trees and species trees: The gene-duplication problem is fixed-parameter tractable. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 288–293. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  29. Zhang, L.: On a Mirkin–Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology 4, 177–188 (1997)

    Article  Google Scholar 

  30. Zmasek, C.M., Eddy, S.R.: ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics 17(4), 383–384 (2001)

    Article  Google Scholar 

  31. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, D., Halldórsson, B.V., Vernot, B. (2005). A Hybrid Micro-Macroevolutionary Approach to Gene Tree Reconstruction. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_19

Download citation

  • DOI: https://doi.org/10.1007/11415770_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25866-7

  • Online ISBN: 978-3-540-31950-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics