Skip to main content

Finding and Analyzing Database User Sessions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 3453)

Abstract

A database user session is a sequence of queries issued by a user (or an application) to achieve a certain task. Analysis of task-oriented database user sessions provides useful insight into the query behavior of database users. In this paper, we describe novel algorithms for identifying sessions from database traces and for grouping the sessions different classes. We also present experimental results.

Keywords

  • Session Class
  • User Session
  • Cross Entropy
  • Database User
  • Query Template

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sapia, C.: PROMISE: Predicting query behavior to enable predictive caching strategies for OLAP systems. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 224–233. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  2. Yao, Q., An, A.: Using user access patterns for semantic query caching. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 737–746. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  3. Bowman, I.T., Salem, K.: Optimization of query streams using semantic prefetching. In: Proceedings of the 2004 ACM SIGMOD, pp. 179–190. ACM Press, New York (2004)

    CrossRef  Google Scholar 

  4. Yao, Q., An, A.: Characterizing database user’s access patterns. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 528–538. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  5. Behm, A.: Serge Rielau, R.S.: Returning modified rows - SELECT statements with side effects. In: VLDB 2004, Toronto, Canada (2004)

    Google Scholar 

  6. Elnaffar, S., Martin, P.: Characterizing computer systems’ workloads. Tr. 2002-461, School of Computing, Queen University. Ontario, Canada (2002)

    Google Scholar 

  7. Calzarossa, M., Serazzi, G.: Workload characterization: A survey. Proc. IEEE 81, 1136–1150 (1993)

    CrossRef  Google Scholar 

  8. Duy, J., Vaughan, L.: Usage data for electronic resources: A comparison between locally-collected and vendor-provided statistics. The Journal of Academic Librarianship 29, 16–22 (2003)

    CrossRef  Google Scholar 

  9. Huang, X., Peng, F., An, A., Schuurmans, D.: Dynamic web log session identification with statistical language models. Journal of the American Society for Information Science and Technology 55, 1290–1303 (2004)

    CrossRef  Google Scholar 

  10. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice-Hall, Englewood Cliffs (2000)

    Google Scholar 

  11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31, 264–323 (1999)

    CrossRef  Google Scholar 

  12. Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA (2002)

    Google Scholar 

  13. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 11, 37–50 (1912)

    CrossRef  Google Scholar 

  14. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 58, 443–453 (1970)

    CrossRef  Google Scholar 

  15. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. Information Systems 25, 345–366 (2000)

    CrossRef  Google Scholar 

  16. Weinan Wang, O.R.Z.: Clustering web sessions by sequence alignment. In: 13th International Workshop on Database and Expert Systems Applications (DEXA 2002) (2002)

    Google Scholar 

  17. Birgit Hay, G.W., Vanhoof, K.: Clustering navigation patterns on a website using a sequence alignment method. In: IJCAI Workshop on Intelligent Techniques for Web Personalization (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, Q., An, A., Huang, X. (2005). Finding and Analyzing Database User Sessions. In: Zhou, L., Ooi, B.C., Meng, X. (eds) Database Systems for Advanced Applications. DASFAA 2005. Lecture Notes in Computer Science, vol 3453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408079_77

Download citation

  • DOI: https://doi.org/10.1007/11408079_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25334-1

  • Online ISBN: 978-3-540-32005-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics