Skip to main content

Designing and Using Views to Improve Performance of Aggregate Queries (Extended Abstract)

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 3453)

Abstract

Data-intensive systems routinely use derived data (e.g., indexes or materialized views) to improve query-evaluation performance. We present a system architecture for Query-Performance Enhancement by Tuning (QPET), which combines design and use of derived data in an end-to-end approach to automated query-performance tuning. Our focus is on a tradeo. between (1) the amount of system resources spent on designing derived data and on keeping the data up to date, and (2) the degree of the resulting improvement in query performance. From the technical point of view, the novelty that we introduce is that we combine aggregate query rewriting techniques [1, 2] and view selection techniques [3] to achieve our goal.

Keywords

  • Evaluation Cost
  • Data Cube
  • Query Performance
  • Aggregate Query
  • View Selection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afrati, F., Chirkova, R.: Selecting and using views to compute aggregate queries. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 383–397. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views. In: Proceedings of PODS, pp. 155–166 (1999)

    Google Scholar 

  3. Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing data cubes efficiently. In: Proc. SIGMOD, pp. 205–216 (1996)

    Google Scholar 

  4. Shasha, D., Bonnet, P.: Database Tuning: Principles, Experiments, and Troubleshooting Techniques. Morgan Kaufmann, San Francisco (2002), http://www.distlab.dk/dbtune/

    Google Scholar 

  5. Microsoft Research AutoAdmin Project: Self-Tuning and Self-Administering Databases, http://research.microsoft.com/dmx/autoadmin/default.asp

  6. IBM Autonomic Computing, http://www.research.ibm.com/autonomic/

  7. Afrati, F., Chirkova, R., Gupta, S., Loftis, C.: Designing and Using Views to Improve Performance of Aggregate Queries. Technical Report NCSU CSC TR-2004-26 (2004), http://www4.ncsu.edu/~rychirko/Papers/techReport090904.pdf

  8. Chirkova, R., Gupta, S., Kim, K.H., Sandhu, S.: Extensible framework for query-performance enhancement by tuning (2004), Code downloads and documentation are available from http://research.csc.ncsu.edu/selftune/

  9. Chirkova, R., Halevy, A., Suciu, D.: A formal perspective on the view selection problem. VLDB Journal 11, 216–237 (2002)

    CrossRef  MATH  Google Scholar 

  10. Agrawal, S., Chaudhuri, S., Narasayya, V.: Automated selection of materialized views and indexes in SQL databases. In: Proceedings of VLDB, pp. 496–505 (2000)

    Google Scholar 

  11. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.: Index selection for OLAP. In: Proceedings of ICDE, pp. 208–219 (1997)

    Google Scholar 

  12. Shukla, A., Deshpande, P., Naughton, J.: Materialized view selection for multidimensional datasets. In: Proceedings of VLDB, pp. 488–499 (1998)

    Google Scholar 

  13. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10, 270–294 (2001)

    CrossRef  MATH  Google Scholar 

  14. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing queries with materialized views. In: Proceedings of the Eleventh International Conference on Data Engineering (ICDE), pp. 190–200 (1995)

    Google Scholar 

  15. Widom, J.: Research problems in data warehousing. In: Proceedings of CIKM (1995)

    Google Scholar 

  16. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.: Data cube: A relational aggregation operator generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery 1, 29–53 (1997)

    CrossRef  Google Scholar 

  17. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Record 26, 65–74 (1997)

    CrossRef  Google Scholar 

  18. Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J., Ramakrishnan, R., Sarawagi, S.: On the computation of multidimensional aggregates. In: Proceedings of VLDB, pp. 506–521 (1996)

    Google Scholar 

  19. Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data warehousing environments. In: Proceedings of VLDB, pp. 358–369 (1995)

    Google Scholar 

  20. Srivastava, D., Dar, S., Jagadish, H., Levy, A.: Answering queries with aggregation using views. In: Proc. VLDB, pp. 318–329 (1996)

    Google Scholar 

  21. PostgreSQL (Open source database-management system), http://www.postgresql.org/

  22. TPC-H: TPC Benchmark H (Decision Support), Available from http://www.tpc.org/tpch/spec/tpch2.1.0.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Afrati, F., Chirkova, R., Gupta, S., Loftis, C. (2005). Designing and Using Views to Improve Performance of Aggregate Queries (Extended Abstract). In: Zhou, L., Ooi, B.C., Meng, X. (eds) Database Systems for Advanced Applications. DASFAA 2005. Lecture Notes in Computer Science, vol 3453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408079_48

Download citation

  • DOI: https://doi.org/10.1007/11408079_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25334-1

  • Online ISBN: 978-3-540-32005-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics