Advertisement

A Four-Pixel Scheme for Singular Differential Equations

  • Martin Welk
  • Joachim Weickert
  • Gabriele Steidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3459)

Abstract

Singular diffusion equations such as total variation (TV) and balanced forward–backward (BFB) diffusion are appealing: They have a finite extinction time, and experiments show that piecewise constant structures evolve. Unfortunately, their implementation is awkward. The goal of this paper is to introduce a novel class of numerical methods for these equations in the 2D case. They are simple to implement, absolutely stable and do not require any regularisation in order to make the diffusivity bounded. Our schemes are based on analytical solutions for 2×2-pixel images which are combined by means of an additive operator splitting (AOS). We show that they may also be regarded as iterated 2D Haar wavelet shrinkage. Experiments demonstrate the favourable performance of our numerical algorithm.

Keywords

Numerical Scheme Extinction Time Wavelet Shrinkage Total Variation Minimization Shrinkage Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, L., Guichard, F., Lions, P.L., Morel, J.-M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differential and Integral Equations 14(3), 321–360 (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Andreu, F., Caselles, V., Diaz, J.I., Mazón, J.M.: Qualitative properties of the total variation flow. Journal of Functional Analysis 188(2), 516–547 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in R N. Journal of Differential Equations 184(2), 475–525 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brox, T., Welk, M., Steidl, G., Weickert, J.: Equivalence results for TV diffusion and TV regularisation. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 86–100. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 32, 1895–1909 (1992)CrossRefGoogle Scholar
  7. 7.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Coifman, R.R., Sowa, A.: New methods of controlled total variation reduction for digital functions. SIAM Journal on Numerical Analysis 39(2), 480–498 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dibos, F., Koepfler, G.: Global total variation minimization. SIAM Journal on Numerical Analysis 37(2), 646–664 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Feng, X., Prohl, A.: Analysis of total variation flow and its finite element approximations. Technical Report 1864, Institute of Mathematics and its Applications, University of Minnesota, Minneapolis, MN. Submitted to Communications on Pure and Applied Mathematics (July 2002)Google Scholar
  11. 11.
    Keeling, S.L., Stollberger, R.: Nonlinear anisotropic diffusion filters for wide range edge sharpening. Inverse Problems 18, 175–190 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lu, T., Neittaanmäki, P., Tai, X.-C.: A parallel splitting up method and its application to Navier–Stokes equations. Applied Mathematics Letters 4(2), 25–29 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mrázek, P., Weickert, J.: Rotationally invariant wavelet shrinkage. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 156–163. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM Journal on Applied Mathematics 61(2), 633–658 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  16. 16.
    Petrovic, A., Divorra Escoda, O., Vandergheynst, P.: Multiresolution segmentation of natural images: From linear to non-linear scale-space repesentations. IEEE Transactions on Image Processing 13(8), 1104–1114 (2004)CrossRefGoogle Scholar
  17. 17.
    Pollak, I., Willsky, A.S., Huang, Y.: Nonlinear evolution equations as fast and exact solvers of estimation problems. IEEE Transactions on Signal Processing (2004) (to appear)Google Scholar
  18. 18.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  19. 19.
    Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tsurkov, V.I.: An analytical model of edge protection under noise suppression by anisotropic diffusion. Journal of Computer and Systems Sciences International 39(3), 437–440 (2000)Google Scholar
  21. 21.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)zbMATHGoogle Scholar
  22. 22.
    Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7(3), 398–410 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Welk
    • 1
  • Joachim Weickert
    • 1
  • Gabriele Steidl
    • 2
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Bldg. 27Saarland UniversitySaarbrückenGermany
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of MannheimMannheimGermany

Personalised recommendations