Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features

  • Yousun Kang
  • Ken’ichi Morooka
  • Hiroshi Nagahashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3459)


We have developed a new framework for scale invariant texture analysis using multi-scale local autocorrelation features. The multi-scale features are made of concatenated feature vectors of different scales, which are calculated from higher-order local autocorrelation functions. To classify different types of textures among the given test images, a linear discriminant classifier (LDA) is employed in the multi-scale feature space. The scale rate of test patterns in their reduced subspace can also be estimated by principal component analysis (PCA). This subspace represents the scale variation of each scale step by principal components of a training texture image. Experimental results show that the proposed method is effective in not only scale invariant texture classification including estimation of scale rate, but also scale invariant segmentation of 2D image for scene analysis.


Feature Vector Linear Discriminant Analysis Texture Image Texture Pattern Texture Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Varma, M., Zisserman, A.: Estimating Illumination Direction from Textured Images. In: Proc. Int. Conf. Computer Vision and Pattern Recognition (CVPR 2003), vol. 1, pp. 179–186 (2004)Google Scholar
  2. 2.
    Turtinen, M., Pietikainen, M.: Visual Training and Classification of Outdoor Textured Scene Images. In: The 3rd international workshop on texture analysis and synthesis, pp. 101–106 (2003)Google Scholar
  3. 3.
    Pun, C., Lee, M.: Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Trans. PAMI (Pattern Analysis and Machine Intelligence) 25(5), 590–602 (2003)CrossRefGoogle Scholar
  4. 4.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. PAMI 24(7), 971–987 (2002)Google Scholar
  5. 5.
    Jain, A.K., Duin, P., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Trans. PAMI 22(1), 4–37 (2000)Google Scholar
  6. 6.
    Fisher, R.A.: The Statistical Utilization of Multiple Measurements. Annals of Eugenics 8, 376–386 (1938)Google Scholar
  7. 7.
    Gibson, J.J.: Perception of the Visual World. HoughtonMifflin, Boston (1950)Google Scholar
  8. 8.
    Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. J. of Applied Statistics 21(2), 224–270 (1994)Google Scholar
  9. 9.
    Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. PAMI 12(3), 234–254 (1990)Google Scholar
  10. 10.
    Goudail, F., Lange, E., Iwamoto, T., Kyuma, K., Otsu, N.: Face Recognition System Using Local Autocorrelations and Multiscale Integration. IEEE Trans. PAMI 18(10), 1024–1028 (1996)Google Scholar
  11. 11.
    Popovici, V., Thiran, J.: Higher Order Autocorrelations for Pattern Classification. In: International Conference on Image Processing (ICIP), pp. 724–727 (2001)Google Scholar
  12. 12.
    Kreutz, M., Volpel, B., Janssen, H.: Scale-invariant image recognition based on higher-order autocorrelation features. Pattern Recognition 29(1), 19–26 (1996)CrossRefGoogle Scholar
  13. 13.
    McLaughlin, J., Raviv, J.: Nth-Order Autocorrelations in Pattern Recognition. Information and Control 12, 121–142 (1968)zbMATHCrossRefGoogle Scholar
  14. 14.
    Fraleigh, J., Beauregard, R.: Linear Algebra. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  15. 15.
    Rao, C.R.: The Utilization of Multiple Measurements in Problems of Biological Classification. J. Royal Statistical Soc. ser. B 10, 159–203 (1948)zbMATHGoogle Scholar
  16. 16.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)zbMATHGoogle Scholar
  17. 17.
    Loog, M., Duin, R., Haeb-Umbach, R.: Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria. IEEE Trans. PAMI 23(7), 762–766 (2001)Google Scholar
  18. 18.
    Brodatz, P.: Textures: A Photographic Album for Artist and Designers. Dover, New York (1966)Google Scholar
  19. 19.
    Tsutsui, K., Sakato, H., Naganuma, T., Taira, M.: Neural Correlates for Perception of 3D surface Orientation from Texture Gradient. Science 298, 409–412 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yousun Kang
    • 1
  • Ken’ichi Morooka
    • 1
  • Hiroshi Nagahashi
    • 1
  1. 1.Imaging Science and Engineering LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations