Skip to main content

Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Abstract

The decomposition of motion vector fields into components of orthogonal subspaces is an important representation for both the analysis and the variational estimation of complex motions. Common finite differencing or finite element methods, however, do not preserve the basic identities of vector analysis. Therefore, we introduce in this paper the mimetic finite difference method for the estimation of fluid flows from image sequences. Using this discrete setting, we represent the motion components directly in terms of potential functions which are useful for motion pattern analysis. Additionally, we analyze well-posedness which has been lacking in previous work. Experimental results, including hard physical constraints like vanishing divergence of the flow, validate the theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amodei, L., Benbourhim, M.N.: A vector spline approximation. J. Approx. Theory 67(1), 51–79 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Suter, D.: Motion estimation and vector splines. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, June 1994, pp. 939–942. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  3. Gupta, S., Prince, J.: Stochastic models for div-curl optical flow methods. Signal Proc. Letters 3(2), 32–34 (1996)

    Article  Google Scholar 

  4. Corpetti, T., Mémin, É., Pérez, P.: Dense motion analysis in fluid imagery. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 676–691. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  6. Corpetti, T., Mémin, E., Pérez, P.: Extraction of singular points from dense motion fields: an analytic approach. J. of Math. Imag. Vision 19(3), 175–198 (2003)

    Article  MATH  Google Scholar 

  7. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  8. Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hyman, J.M., Shashkov, M.J.: Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl. Numer. Math. 25(4), 413–442 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hyman, J.M., Shashkov, M.J.: The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36(3), 788–818 (1999) (electronic)

    Article  MathSciNet  Google Scholar 

  12. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)

    Article  Google Scholar 

  13. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  14. Xu, J.: Iterative methods by space decomposition and subspace correction: A unifying approach. SIAM Review 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tai, X.-C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comp. 71(237), 105–124 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1995) (1999)

    MATH  Google Scholar 

  17. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, J., Ruhnau, P., Mémin, E., Schnörr, C. (2005). Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_23

Download citation

  • DOI: https://doi.org/10.1007/11408031_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics