Skip to main content

Image Deblurring in the Presence of Salt-and-Pepper Noise

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Abstract

The problem of image deblurring in the presence of salt and pepper noise is considered. Standard image deconvolution algorithms, that are designed for Gaussian noise, do not perform well in this case. Median type filtering is a common method for salt and pepper noise removal. Deblurring an image that has been preprocessed by median-type filtering is however difficult, due to the amplification (in the deconvolution stage) of median-induced distortion. A unified variational approach to salt and pepper noise removal and image deblurring is presented. An objective functional that represents the goals of deblurring, noise-robustness and compliance with the piecewise-smooth image model is formulated. A modified L 1 data fidelity term integrates deblurring with robustness to outliers. Elements from the Mumford-Shah functional, that favor piecewise smooth images with simple edge-sets, are used for regularization. Promising experimental results are shown for several blur models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, R., Vogel, C.R.: Analysis of Total Variation Penalty Methods. Inverse Problems 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of Functionals Depending on Jumps by Elliptic Functionals via Γ-Convergence. Communications on Pure and Applied Mathematics XLIII, 999–1036 (1990)

    Article  MathSciNet  Google Scholar 

  3. Banham, M., Katsaggelos, A.: Digital Image Restoration. IEEE Signal Processing Mag. 14, 24–41 (1997)

    Article  Google Scholar 

  4. Bar, L., Sochen, N., Kiryati, N.: Variational Pairing of Image Segmentation and Blind Restoration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 166–177. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Arce, G.R., Paredes, J.L., Mullan, J.: Nonlinear Filtering for Image Analysis and Enhancement. In: Bovik, A.L. (ed.) Handbook of Image & Video Processing. Academic Press, London (2000)

    Google Scholar 

  6. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Chan, R.H., Ho, C., Nikolova, M.: Salt-and-Pepper Noise Removal by Median-type Noise Detectors and Detail-preserving Regularization (to appear)

    Google Scholar 

  8. Chan, T.F., Wong, C.: Total Variation Blind Deconvolution. IEEE Trans. Image Processing 7, 370–375 (1998)

    Article  Google Scholar 

  9. Chen, T., Wu, H.R.: Space Variant Median Filters for the Restoration of Impulse Noise Corrupted Images. IEEE Trans. Circuits and Systems II 48, 784–789 (2001)

    Article  MATH  Google Scholar 

  10. Durand, S., Froment, J.: Reconstruction of Wavelet Coefficients Using Total Variation Minimization. SIAM Journal of Scientific Computing 24, 1754–1767 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Durand, S., Nikolova, M.: Restoration of Wavelet Coefficients by Minimizing a Specially Designed Objective Function. In: Proc. IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 145–152 (2003)

    Google Scholar 

  12. Malgouyres, F.: Minimizing the Total Variation Under a General Convex Constraint. IEEE Trans. Image Processing 11, 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  13. Hwang, H., Haddad, R.A.: Adaptive Median Filters: New Algorithms and Results. IEEE Trans. Image Processing 4, 499–502 (1995)

    Article  Google Scholar 

  14. Bect, J., Blanc-Feraud, L., Aubert, G., Chambolle, A.: A l 1-Unified Variational Framework for Image Restoration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Mumford, D., Shah, J.: Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Communications on Pure and Applied Mathematics 42, 577–684 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nikolova, M.: Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms: Application to the Processing of Outliers. SIAM Journal on Numerical Analysis 40, 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nikolova, M.: A Variational Approach to Remove Outliers and Impulse Noise. Journal of Mathematical Imaging and Vision 20, 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  18. Pok, G., Liu, J.-C., Nair, A.S.: Selective Removal of Impulse Noise based on Homogeneity Level Information. IEEE Trans. Image Processing 12, 85–92 (2003)

    Article  Google Scholar 

  19. Rondi, L., Santosa, F.: Enhanced Electrical Impedance Tomography via the Mumford-shah Functional. ESAIM: Control, Optimization and Calculus of Variations 6, 517–538 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rudin, L., Osher, S., Fatemi, E.: Non Linear Total Variation Based Noise Removal Algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  21. Rudin, L., Osher, S.: Total Variation Based Image Restoration with Free Local Constraints. In: Proc. IEEE ICIP, Austin TX, USA, vol. 1, pp. 31–35 (1994)

    Google Scholar 

  22. Tikhonov, A., Arsenin, V.: Solutions of Ill-posed Problems, New York (1977)

    Google Scholar 

  23. Vogel, C., Oman, M.: Fast, Robust Total Variation-based Reconstruction of Noisy, Blurred Images. IEEE Trans. Image Processing 7, 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Weisstein, E.W., et al.: Minimal Residual Method, from MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/MinimalResidualMethod.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bar, L., Sochen, N., Kiryati, N. (2005). Image Deblurring in the Presence of Salt-and-Pepper Noise. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_10

Download citation

  • DOI: https://doi.org/10.1007/11408031_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics