Planck Scale Effects in Astrophysics and Cosmology pp 363-408

Part of the Lecture Notes in Physics book series (LNP, volume 669)

Loop Quantum Gravity and planck Scale Phenomenology

  • L. Smolin
Chapter

Abstract

Of the different approaches to quantum gravity, the best developed, from the point of view of addressing the key theoretical questions a quantum theory of gravity must answer, is loop quantum gravity1. While string theory appears to better address the issue of uni.cation, at least so far, it fails to provide a background independent approach to the quantum mechanics of spacetime geometry-a necessary condition for any quantum theory of gravity. Moreover, many key conjectures remain unproven, including perturbative finiteness and consistency, which have not been demonstrated for any string theory past second order in perturbation theory2. By contrast, loop quantum gravity appears to provide a consistent and finite background independent approach to quantum gravity. There is recent progress on several issues, including accounting for the black hole entropy [8], and giving a precise quantum mechanical description of the earliest phases of the evolution of the universe [9, 10]. Furthermore, it gives unique predictions of novel quantum gravitational phenomena, such as the discreteness of area, volume and other observables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Rovelli, Living Rev. Rel. 1 (1998) 1, gr-qc/9710008.Google Scholar
  2. 2.
    A. Ashtekar, New perspectives in canonical gravity (Bibliopolis, Naples, 1988); Lectures on non-perturbative canonical gravity, Advanced Series in Astrophysics and Cosmology-Vol. 6 (World Scientific, Singapore, 1991).Google Scholar
  3. 3.
    R. Gambini and J. Pullin, Loops, knots, gauge theories and quantum gravity, Cambridge University Press, 1996.Google Scholar
  4. 4.
    L. Smolin: in Quantum Gravity and Cosmology, eds J Perez-Mercader et al., World Scientific, Singapore 1992; “The future of spin networks” gr-qc/9702030 in the Penrose Festschrift.Google Scholar
  5. 5.
    L. Smolin, “Quantum gravity with a positive cosmological constant,” hep-th/0209079.Google Scholar
  6. 6.
    L. Smolin, “How far are we from the quantum theory of gravity?,” hep-th/0303185.Google Scholar
  7. 7.
    A. Ashtekar and J. Lewandowski, “Background independent quantum gravity: a status report,” gr-qc/0404018.Google Scholar
  8. 8.
    O. Dreyer, “Ln(3) and Black Hole Entropy,” gr-qc/0404055; “Quasinormal Modes, the Area Spectrum, and Black Hole Entropy,” Phys. Rev. Lett. 90 (2003) 081301, gr-qc/0211076.Google Scholar
  9. 9.
    Martin Bojowald, “Isotropic Loop Quantum Cosmology”, Class. Quant. Grav. 19 (2002) 2717-2742, gr-qc/0202077; “Inflation from Quantum Geometry”, gr-qc/0206054; “The Semiclassical Limit of Loop Quantum Cosmology”, gr-qc/0105113, Class. Quant. Grav. 18 (2001) L109-L116; “Dynamical Initial Conditions in Quantum Cosmology”, gr-qc/0104072, Phys. Rev. Lett. 87 (2001) 121301.Google Scholar
  10. 10.
    S. Tsujikawa, P. Singh, and R. Maartens, “Loop quantum gravity effects on inflation and the CMB,” astro-ph/0311015Google Scholar
  11. 11.
    G. Amelino-Camelia et al., Int. J. Mod. Phys. A12:607-624,1997; G. Amelino-Camelia et al. Nature 393:763-765,1998; J. Ellis et al., Astrophys. J. 535:139-151, 2000; J. Ellis, N.E. Mavromatos and D. Nanopoulos, Phys. Rev. D63:124025,2001; ibidem astro-ph/0108295.Google Scholar
  12. 12.
    G. Amelino-Camelia and T. Piran, Phys. Rev. D64 (2001) 036005.CrossRefGoogle Scholar
  13. 13.
    Tomasz J. Konopka, Seth A. Major, “Observational Limits on Quantum Geometry Effects”, New J. Phys. 4 (2002) 57. hep-ph/0201184; Ted Jacobson, Stefano Liberati, David Mattingly, “TeV Astrophysics Constraints on Planck Scale Lorentz Violation”, hep-ph/0112207.Google Scholar
  14. 14.
    Subir Sarkar, “Possible astrophysical probes of quantum gravity”, Mod. Phys. Lett. A17 (2002) 1025-1036, gr-qc/0204092.CrossRefGoogle Scholar
  15. 15.
    J. Lukierski et al., “Q Deformation Of Poincar&x00027;e Algebra,” Phys. Lett. B264 (1991) 331.CrossRefGoogle Scholar
  16. 16.
    G. Amelino-Camelia, Nature 418 (2002) 34.CrossRefPubMedGoogle Scholar
  17. 17.
    J. Magueijo and L. Smolin, Phys. Rev. Lett. (88) 190403, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    J. Magueijo and L. Smolin, gr-qc/0207Google Scholar
  19. 19.
    N.R. Bruno, G. Amelino-Camelia, J. Kowalski-Glikman, Phys. Lett. B522:133-138,2001; J. Kowalski-Glikman and S. Nowak, hep-th/0203040;S. Judes, gr-qc/0205067; M. Visser, gr-qc/0205093; S. Judes, M. Visser, gr-qc/0205067; D. V. Ahluwalia and M. Kirchbach, qr-qc/0207004.Google Scholar
  20. 20.
    Achucarro and Townsend, “A Chern-Simons Action For Three-Dimensional Anti-De Sitter Supergravity Theories,” Phys. Lett. B180 (1986) 89; E. Witten, “(2+1)-Dimensional Gravity As An Exactly Soluble System,” Nucl. Phys. B311 (1988) 46.Google Scholar
  21. 21.
    A. Ashtekar, V. Husain, C. Rovelli, J. Samuel and L. Smolin, “2+1 quantum gravity as a toy model for the 3+1 theory,” Class. and Quantum Grav. L185-L193 (1989); L. Smolin, “Loop representation for quantum gravity in 2+1 dimensions,” in the proceedings of the John';s Hopkins Conference on Knots, Tolopoly and Quantum Field Theory ed. L. Lusanna (World Scientific, Singapore, 1989) .Google Scholar
  22. 22.
    Laurent Freidel, Jerzy Kowalski-Glikman, Lee Smolin, “2+1 gravity and Doubly Special Relativity,” hep-th/0307085, Phys. Rev. D69 (2004) 044001.Google Scholar
  23. 23.
    Hans-Juergen Matschull, Max Welling, “Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity,” gr-qc/9708054, Class. Quant. Grav. 15 (1998) 2981; Hans-Juergen Matschull, “The Phase Space Structure of Multi Particle Models in 2+1 Gravity,” gr-qc/0103084, Class. Quant. Grav. 18 (2001) 3497; F. A. Bais, N. M. Muller, B. J. Schroers, “Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity,” hep-th/0205021, Nucl. Phys. B640 (2002) 3.Google Scholar
  24. 24.
    Giovanni Amelino-Camelia, Lee Smolin, Artem Starodubtsev, “Quantum symmetry, the cosmological constant and Planck scale phenomenology,” hep-th/0306134.Google Scholar
  25. 25.
    J.E. Nelson, R.F. Picken, “Quantum Holonomies in (2+1)-Dimensional Gravity,” Phys. Lett. B471 (2000) 367; J.E. Nelson, T. Regge, “Quantisation of 2+1 gravity for genus 2,” Phys. Rev. D50 (1994) 5125, gr-qc/9311029Google Scholar
  26. 26.
    E. Buffenoir, K. Noui, P. Roche, “Hamiltonian Quantization of Chern-Simons theory with SL(2,C) Group,” hep-th/0202121, Class. Quant. Grav. 19 (2002) 4953; Karim Noui, Philippe Roche, “Cosmological Deformation of Lorentzian Spin Foam Models,” gr-qc/0211109, Class. Quant. Grav. 20 (2003) 3175-3214.Google Scholar
  27. 27.
    L. Smolin, “Linking topological quantum field theory and nonperturbative quantum gravity,” J. Math. Phys. 36(1995)6417, gr-qc/9505028.CrossRefGoogle Scholar
  28. 28.
    J. Baez, “Spin foammodels,”Class.Quant. Grav. 15 (1998) 1827-1858, gr-qc/9709052; “An introduction to spin foam models of quantum gravity and BF theory,” Lect. Notes Phys., 543:2594, 2000.Google Scholar
  29. 29.
    S. Major and L. Smolin, “Quantum deformation of quantum gravity,” Nucl. Phys. B473, 267(1996), gr-qc/9512020; R. Borissov, S. Major and L. Smolin, “The geometry of quantum spin networks,” Class. and Quant. Grav.12, 3183(1996), gr-qc/9512043.Google Scholar
  30. 30.
    Artem Starodubtsev, “Topological excitations around the vacuum of quantum gravity I: The symmetries of the vacuum,” hep-th/0306135.Google Scholar
  31. 31.
    A. Ashtekar, C. Rovelli and L. Smolin,“Weaving a classical geometry with quantum threads,” Phys. Rev. Lett. 69 (1992) 237 hep-th/9203079; Luca Bombelli, “Statistical geometry of random weave states,” gr-qc/0101080; A. Corichi, J.M. Reyes, “A Gaussian Weave for Kinematical Loop Quantum Gravity,” gr-qc/0006067, Int. J. Mod. Phys. D10 (2001) 325-338.Google Scholar
  32. 32.
    Rodolfo Gambini, Jorge Pullin, “Nonstandard optics from quantum spacetime”, Phys. Rev. D59 (1999) 124021, gr-qc/9809038;CrossRefGoogle Scholar
  33. 33.
    Jorge Alfaro, Hugo A. Morales-Tžcotl, Luis F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D65 (2002) 103509, hep-th/0108061; “Quantum gravity and spin 1/2 particles effective dynamics,” hep-th/0208192, Phys. Rev. D66:124006,2002.Google Scholar
  34. 34.
    Hanno Sahlmann, Thomas Thiemann, “Towards the QFT on Curved Spacetime Limit of QGR. I: A General Scheme,” gr-qc/0207030; “Towards the QFT on Curved Spacetime Limit of QGR. II: A Concrete Implementation,” gr-qc/0207031.Google Scholar
  35. 35.
    H. Kodama, Prog. Theor. Phys. 80, 1024(1988); Phys. Rev. D42(1990)2548.Google Scholar
  36. 36.
    L. Smolin and C. Soo, “The Chern-Simons Invariant as the Natural Time Variable for Classical and Quantum Cosmology,” Nucl. Phys. B449 (1995) 289, gr-qc/9405015.CrossRefGoogle Scholar
  37. 37.
    A. Ashtekar, private communication.Google Scholar
  38. 38.
    A. Sen, “On the existence of neutrino zero modes in vacuum spacetime,” J. Math. Phys. 22 (1981) 1781, “Gravity as a spin system,” Phys. Lett. B11 (1982) 89.Google Scholar
  39. 39.
    Abhay Ashtekar, “New variables for classical and quantum gravity," Phys. Rev. Lett. 57(18), 2244-2247 (1986).CrossRefGoogle Scholar
  40. 40.
    C. Soo, “Wave function of the Universe and Chern-Simons Perturbation Theory,” gr-qc/0109046.Google Scholar
  41. 41.
    P. A. M. Dirac, Lectures on Quantum Mechanics Belfer Graduate School of Science Monographs, no. 2 (Yeshiva University Press, New York,1964).Google Scholar
  42. 42.
    J. Stachel, “Einstein';s search for general covariance, 1912-15” in Einstein and the History of General Relativity vol 1 of Einstein Studies eds. D. Howard and J. Stachel. (Birkhauser, Boston, 1989).Google Scholar
  43. 43.
    L. Smolin Three Roads to Quantum Gravity (Weidenfeld and Nicolson and Basic Books, London and New York, 2001)Google Scholar
  44. 44.
    Y. Ling and L. Smolin, “Supersymmetric spin networks and quantum supergravity,” Phys. Rev. D61, 044008(2000), hep-th/9904016; “Holographic Formulation of Quantum Supergravity,” hep-th/0009018, Phys. Rev. D63 (2001) 064010.Google Scholar
  45. 45.
    M. Atiyah, “Topological quantum field theory” Publ. Math. IHES 68 (1989) 175; The Geometry and Physics of Knots, Lezion Lincee (Cambridge University Press, Cambridge, 1990); G. Segal, Conformal field theory Oxford preprint (1988).Google Scholar
  46. 46.
    R. Floreanini and R. Percacci, Phys. Lett. B224 (1989) 291-294; B231:119-124, 1989. V.V. Fock, N.A. Nekrasov, A.A. Rosly, K.G. Selivanov “What we think about the higher dimensional Chern-Simons theories” (Moscow, ITEP). ITEP-91-70, July 1991. 7pp. in Sakharov Conf.1991:465-472 (QC20:I475:1991)Google Scholar
  47. 47.
    M. Banados, M. Henneaux, C. Iannuzzo and C. M. Viallet, “A note on the gauge symmetries of pure Chern-Simons theory with p-form gauge fields” gr-qc/9703061; Max Banados, Luis J. Garay and Marc Henneaux, Nucl. Phys. B476:611-635,1996, hep-th/9605159; Phys. Rev. D53:593-596,1996, hep-th/9506187.Google Scholar
  48. 48.
    Y. Ling and L. Smolin, “Eleven dimensional supergravity as a constrained topological field theory,” hep-th/0003285, Nucl. Phys. B601 (2001) 191-208.CrossRefGoogle Scholar
  49. 49.
    J. Ambjorn, A. Dasgupta, J. Jurkiewiczcy and R. Loll, “A Lorentzian cure for Euclidean troubles”, hep-th/0201104; J. Ambjorn and R. Loll, Nucl. Phys. B536 (1998) 407 [hep-th/9805108]; J. Ambjorn, J. Jurkiewicz and R. Loll, Phys. Rev. Lett. 85 (2000) 924 [hepth/ 0002050]; Nucl. Phys. B610 (2001) 347 [hep-th/0105267]; R. Loll, Nucl. Phys. B (Proc. Suppl.) 94 (2001) 96 [hep-th/0011194]; J. Ambjorn, J. Jurkiewicz and R. Loll, Phys. Rev. D64 (2001) 044011 [hep-th/0011276]; JHEP 09 (2001) 022 [hep-th/0106082].Google Scholar
  50. 50.
    T. Jacobson and L. Smolin, Phys. Lett. B 196 (1987) 39; Class. and Quant. Grav. 5 (1988) 583; J. Samuel, Pramana-J Phys. 28 (1987) L429.Google Scholar
  51. 51.
    J.F. Plebanski. “On the separation of Einsteinian” J. Math. Phys., 18:2511, 1977.CrossRefGoogle Scholar
  52. 52.
    R. Capovilla, J. Dell and T. Jacobson, Phys. Rev. Lett. 21, 2325(1989); Class. Quant. Grav. 8, 59(1991); R. Capovilla, J. Dell, T. Jacobson and L. Mason, Class. and Quant. Grav. 8, 41(1991).Google Scholar
  53. 53.
    J. Barbero, “Real Ashtekar variables for Lorentzian signature spacetime,” Phys. Rev. D51 (1995) 5507.Google Scholar
  54. 54.
    T. Thiemann, “Quantum Spin Dynamics (QSD) I & II,” Class. Quant. Grav. 15 (1998) 839-905, gr-qc/9606089, gr-qc/9606090.CrossRefGoogle Scholar
  55. 55.
    K. Krasnov, “On Quantum Statistical Mechanics of a Schwarzschild Black Hole,” grqc/9605047, Gen. Rel. Grav. 30 (1998) 53-68; C. Rovelli, “Black hole entropy from loop quantum gravity," grqc/9603063.Google Scholar
  56. 56.
    A. Ashtekar, J. Baez, K. Krasnov, “Quantum Geometry of Isolated Horizons and Black Hole Entropy,” gr-qc/0005126; A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, “Quantum geometry and black hole entropy,” gr-qc/9710007, Phys. Rev. Lett. 80 (1998) 904-907.Google Scholar
  57. 57.
    T. Jacobson and L. Smolin, Nucl. Phys. B 299 (1988) 295.CrossRefGoogle Scholar
  58. 58.
    C. Rovelli and L. Smolin, “Knot theory and quantum theory,” Phys. Rev. Lett 61(1988)1155; “Loop representation of quantum general relativity,” Nucl. Phys. B331(1990)80-152.Google Scholar
  59. 59.
    R. Gambini and A. Trias, Phys. Rev. D23 (1981) 553, Lett. al Nuovo Cimento 38 (1983) 497; Phys. Rev. Lett. 53 (1984) 2359; Nucl. Phys. B278 (1986) 436; R. Gambini, L. Leal and A. Trias, Phys. Rev. D39 (1989) 3127.Google Scholar
  60. 60.
    M. P. Reisenberger. “Worldsheet formulations of gauge theories and gravity,” in Proceedings of the 7th Marcel Grossman Meeting, ed. by R. Jantzen and G. MacKeiser, World Scientific, 1996; gr-qc/9412035; “A lattice worldsheet sum for 4-d Euclidean general relativity,” gr-qc/9711052.Google Scholar
  61. 61.
    M. P. Reisenberger and C. Rovelli. “Sum-over-surface form of loop quantum gravity,” gr-qc/9612035, Phys. Rev. D 56 (1997) 3490; “Spacetime as a Feynman diagram: the connection formulation,” Class. Quant. Grav., 18:121140, 2001; “Spin foams as Feynman diagrams,” gr-qc/0002083.Google Scholar
  62. 62.
    J. Barrett and L. Crane, “Relativistic spin networks and quantum gravity,” J. Math. Phys. 39 (1998) 3296-3302, gr-qc/9709028.CrossRefGoogle Scholar
  63. 63.
    J. Baez, “Spin foam models,” Class. Quant. Grav. 15 (1998) 1827-1858, gr-qc/9709052; “An introduction to spin foam models of quantum gravity and BF theory,” Lect. Notes Phys., 543:2594, 2000.Google Scholar
  64. 64.
    Fotini Markopoulou, “Dual formulation of spin network evolution,” gr-qc/9704013.Google Scholar
  65. 65.
    Fotini Markopoulou, Lee Smolin, “Quantum geometry with intrinsic local causality,” Phys. Rev. D58 (1998) 084032, gr-qc/9712067.CrossRefGoogle Scholar
  66. 66.
    J. Iwasaki, “A reformulation of the Ponzano-Regge quantum gravity model in terms of surfaces,” gr-qc/9410010; “A definition of the Ponzano-Regge quantum gravity model in terms of surfaces,” gr-qc/9505043, J. Math. Phys. 36 (1995) 6288; L. Freidel and K. Krasnov, “Spin foam models and the classical action principle,” Adv. Theor. Math. Phys., 2:11831247, 1999; R. De Pietri, L. Freidel, K. Krasnov, and C. Rovelli, “Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space,” Nucl. Phys. B, 574:785806, 2000.Google Scholar
  67. 67.
    B. Bruegmann, R. Gambini and J. Pullin, Phys. Rev. Lett. 68 (1992) 431-434; Rodolfo Gambini, Jorge Griego, Jorge Pullin, “Chern-Simons states in spin-network quantum gravity,” gr-qc/9703042, Phys. Lett. B413 (1997) 260-266; C. Di Bartolo, R. Gambini, J. Griego, J. Pullin, “Consistent canonical quantization of general relativity in the space of Vassiliev knot invariants,” gr-qc/9909063, Phys. Rev. Lett. 84 (2000) 2314-2317; “Canonical quantum gravity in the Vassiliev invariants arena: I. Kinematical structure,” gr-qc/9911009, Class. Quant. Grav. 17 (2000) 3211-3238.Google Scholar
  68. 68.
    R. Jackiw, Topological Investigations In Quantized Gauge Theories, p. 258, exercise 3.7, in S. B. Treiman et al. Current Algebra And Anomalies (World Scientific, 1985).Google Scholar
  69. 69.
    E. Witten, “A Note On The Chern-Simons And Kodama Wavefunctions,” gr-qc/0306083.Google Scholar
  70. 70.
    L. Freidel and L. Smolin, “The linearization of the Kodama state,” hep-th/ 0310224.Google Scholar
  71. 71.
    G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D 15, 2738 (1977).CrossRefGoogle Scholar
  72. 72.
    L. N. Chang and C. Soo, “Ashtekar';s variables and the topological phase of quantum gravity,” Proceedings of the XXth. Conference on Differential Geometric Methods in Physics, (Baruch College, New York, 1991), edited by S. Catto and A. Rocha (World Scientific, 1992); Phys. Rev. D46 (1992) 4257; C. Soo and L. N. Chang, Int. J. Mod. Phys. D3 (1994) 529.Google Scholar
  73. 73.
    T. Jacobson, “New Variables for canonical supergravity,” Class. Quant. Grav.5(1988)923; D. Armand-Ugon, R. Gambini, O. Obregon, J. Pullin, “Towards a loop representation for quantum canonical supergravity,” hep-th/9508036, Nucl. Phys. B460 (1996) 615; L. F. Urrutia “Towards a loop representation of connection theories defined over a super-lie algebra,” hep-th/9609010; H. Kunitomo and T. Sano “The Ashtekar formulation for canonical N=2 supergravity,” Prog. Theor. Phys. suppl. (1993) 31; Takashi Sano and J. Shiraishi, “The Nonperturbative Canonical Quantization of the N=1 Supergravity,” Nucl. Phys. B410 (1993) 423, hep-th/9211104; “The Ashtekar Formalism and WKB Wave Functions of N = 1,2 Supergravities,” hep-th/9211103; T. Kadoyoshi and S. Nojiri, “N = 3 and N = 4 two form supergravities,” Mod. Phys. Lett. A12:1165-1174,1997, hep-th/9703149; K. Ezawa, “Ashtekar';s formulation for N = 1, N = 2 supergravities as constrained BF theories,” Prog. Theor. Phys. 95:863-882, 1996, hep-th/9511047.Google Scholar
  74. 74.
    Yi Ling, “Introduction to supersymmetric spin networks”, hep-th/0009020, J. Math. Phys. 43 (2002) 154-169CrossRefGoogle Scholar
  75. 75.
    T. Banks, “T C P, Quantum Gravity, The Cosmological Constant And All That”, Nucl. Phys. B249 (1985) 332.CrossRefGoogle Scholar
  76. 76.
    L. Smolin, in preparation.Google Scholar
  77. 77.
    A. Ashtekar, C. Rovelli and L. Smolin “Gravitons and Loops”, Phys. Rev. D 44 (1991) 1740-1755; J. Iwasaki, C. Rovelli, “Gravitons as embroidery on the weave,” Int. J. Mod. Phys. D 1 (1993) 533; “Gravitons from loops: non-perturbative loop-space quantum gravity contains the graviton-physics approximation,” Class. Quantum Grav. 11 (1994) 1653.Google Scholar
  78. 78.
    M. Spradlin, A. Strominger, A. Volovich, “Les Houches Lectures on de Sitter Space,” hep-th/0110007Google Scholar
  79. 79.
    G. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories”, Commun. Math. Phys. 125 (1989) 417; V. Husain, “Topological Quantum Mechanics”, Phys. Rev. D43 (1991) 1803.Google Scholar

Copyright information

Authors and Affiliations

  • L. Smolin
    • 1
  1. 1.Perimeter Institute for Theoretical Physics Waterloo Department of PhysicsUniversity of WaterlooCanada

Personalised recommendations