Loop Quantum Gravity and planck Scale Phenomenology
- First Online:
Abstract
Of the different approaches to quantum gravity, the best developed, from the point of view of addressing the key theoretical questions a quantum theory of gravity must answer, is loop quantum gravity1. While string theory appears to better address the issue of uni.cation, at least so far, it fails to provide a background independent approach to the quantum mechanics of spacetime geometry-a necessary condition for any quantum theory of gravity. Moreover, many key conjectures remain unproven, including perturbative finiteness and consistency, which have not been demonstrated for any string theory past second order in perturbation theory2. By contrast, loop quantum gravity appears to provide a consistent and finite background independent approach to quantum gravity. There is recent progress on several issues, including accounting for the black hole entropy [8], and giving a precise quantum mechanical description of the earliest phases of the evolution of the universe [9, 10]. Furthermore, it gives unique predictions of novel quantum gravitational phenomena, such as the discreteness of area, volume and other observables.
Preview
Unable to display preview. Download preview PDF.
References
- 1.C. Rovelli, Living Rev. Rel. 1 (1998) 1, gr-qc/9710008.Google Scholar
- 2.A. Ashtekar, New perspectives in canonical gravity (Bibliopolis, Naples, 1988); Lectures on non-perturbative canonical gravity, Advanced Series in Astrophysics and Cosmology-Vol. 6 (World Scientific, Singapore, 1991).Google Scholar
- 3.R. Gambini and J. Pullin, Loops, knots, gauge theories and quantum gravity, Cambridge University Press, 1996.Google Scholar
- 4.L. Smolin: in Quantum Gravity and Cosmology, eds J Perez-Mercader et al., World Scientific, Singapore 1992; “The future of spin networks” gr-qc/9702030 in the Penrose Festschrift.Google Scholar
- 5.L. Smolin, “Quantum gravity with a positive cosmological constant,” hep-th/0209079.Google Scholar
- 6.L. Smolin, “How far are we from the quantum theory of gravity?,” hep-th/0303185.Google Scholar
- 7.A. Ashtekar and J. Lewandowski, “Background independent quantum gravity: a status report,” gr-qc/0404018.Google Scholar
- 8.O. Dreyer, “Ln(3) and Black Hole Entropy,” gr-qc/0404055; “Quasinormal Modes, the Area Spectrum, and Black Hole Entropy,” Phys. Rev. Lett. 90 (2003) 081301, gr-qc/0211076.Google Scholar
- 9.Martin Bojowald, “Isotropic Loop Quantum Cosmology”, Class. Quant. Grav. 19 (2002) 2717-2742, gr-qc/0202077; “Inflation from Quantum Geometry”, gr-qc/0206054; “The Semiclassical Limit of Loop Quantum Cosmology”, gr-qc/0105113, Class. Quant. Grav. 18 (2001) L109-L116; “Dynamical Initial Conditions in Quantum Cosmology”, gr-qc/0104072, Phys. Rev. Lett. 87 (2001) 121301.Google Scholar
- 10.S. Tsujikawa, P. Singh, and R. Maartens, “Loop quantum gravity effects on inflation and the CMB,” astro-ph/0311015Google Scholar
- 11.G. Amelino-Camelia et al., Int. J. Mod. Phys. A12:607-624,1997; G. Amelino-Camelia et al. Nature 393:763-765,1998; J. Ellis et al., Astrophys. J. 535:139-151, 2000; J. Ellis, N.E. Mavromatos and D. Nanopoulos, Phys. Rev. D63:124025,2001; ibidem astro-ph/0108295.Google Scholar
- 12.G. Amelino-Camelia and T. Piran, Phys. Rev. D64 (2001) 036005.CrossRefGoogle Scholar
- 13.Tomasz J. Konopka, Seth A. Major, “Observational Limits on Quantum Geometry Effects”, New J. Phys. 4 (2002) 57. hep-ph/0201184; Ted Jacobson, Stefano Liberati, David Mattingly, “TeV Astrophysics Constraints on Planck Scale Lorentz Violation”, hep-ph/0112207.Google Scholar
- 14.Subir Sarkar, “Possible astrophysical probes of quantum gravity”, Mod. Phys. Lett. A17 (2002) 1025-1036, gr-qc/0204092.CrossRefGoogle Scholar
- 15.J. Lukierski et al., “Q Deformation Of Poincar&x00027;e Algebra,” Phys. Lett. B264 (1991) 331.CrossRefGoogle Scholar
- 16.G. Amelino-Camelia, Nature 418 (2002) 34.CrossRefPubMedGoogle Scholar
- 17.J. Magueijo and L. Smolin, Phys. Rev. Lett. (88) 190403, 2002.CrossRefPubMedGoogle Scholar
- 18.J. Magueijo and L. Smolin, gr-qc/0207Google Scholar
- 19.N.R. Bruno, G. Amelino-Camelia, J. Kowalski-Glikman, Phys. Lett. B522:133-138,2001; J. Kowalski-Glikman and S. Nowak, hep-th/0203040;S. Judes, gr-qc/0205067; M. Visser, gr-qc/0205093; S. Judes, M. Visser, gr-qc/0205067; D. V. Ahluwalia and M. Kirchbach, qr-qc/0207004.Google Scholar
- 20.Achucarro and Townsend, “A Chern-Simons Action For Three-Dimensional Anti-De Sitter Supergravity Theories,” Phys. Lett. B180 (1986) 89; E. Witten, “(2+1)-Dimensional Gravity As An Exactly Soluble System,” Nucl. Phys. B311 (1988) 46.Google Scholar
- 21.A. Ashtekar, V. Husain, C. Rovelli, J. Samuel and L. Smolin, “2+1 quantum gravity as a toy model for the 3+1 theory,” Class. and Quantum Grav. L185-L193 (1989); L. Smolin, “Loop representation for quantum gravity in 2+1 dimensions,” in the proceedings of the John';s Hopkins Conference on Knots, Tolopoly and Quantum Field Theory ed. L. Lusanna (World Scientific, Singapore, 1989) .Google Scholar
- 22.Laurent Freidel, Jerzy Kowalski-Glikman, Lee Smolin, “2+1 gravity and Doubly Special Relativity,” hep-th/0307085, Phys. Rev. D69 (2004) 044001.Google Scholar
- 23.Hans-Juergen Matschull, Max Welling, “Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity,” gr-qc/9708054, Class. Quant. Grav. 15 (1998) 2981; Hans-Juergen Matschull, “The Phase Space Structure of Multi Particle Models in 2+1 Gravity,” gr-qc/0103084, Class. Quant. Grav. 18 (2001) 3497; F. A. Bais, N. M. Muller, B. J. Schroers, “Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity,” hep-th/0205021, Nucl. Phys. B640 (2002) 3.Google Scholar
- 24.Giovanni Amelino-Camelia, Lee Smolin, Artem Starodubtsev, “Quantum symmetry, the cosmological constant and Planck scale phenomenology,” hep-th/0306134.Google Scholar
- 25.J.E. Nelson, R.F. Picken, “Quantum Holonomies in (2+1)-Dimensional Gravity,” Phys. Lett. B471 (2000) 367; J.E. Nelson, T. Regge, “Quantisation of 2+1 gravity for genus 2,” Phys. Rev. D50 (1994) 5125, gr-qc/9311029Google Scholar
- 26.E. Buffenoir, K. Noui, P. Roche, “Hamiltonian Quantization of Chern-Simons theory with SL(2,C) Group,” hep-th/0202121, Class. Quant. Grav. 19 (2002) 4953; Karim Noui, Philippe Roche, “Cosmological Deformation of Lorentzian Spin Foam Models,” gr-qc/0211109, Class. Quant. Grav. 20 (2003) 3175-3214.Google Scholar
- 27.L. Smolin, “Linking topological quantum field theory and nonperturbative quantum gravity,” J. Math. Phys. 36(1995)6417, gr-qc/9505028.CrossRefGoogle Scholar
- 28.J. Baez, “Spin foammodels,”Class.Quant. Grav. 15 (1998) 1827-1858, gr-qc/9709052; “An introduction to spin foam models of quantum gravity and BF theory,” Lect. Notes Phys., 543:2594, 2000.Google Scholar
- 29.S. Major and L. Smolin, “Quantum deformation of quantum gravity,” Nucl. Phys. B473, 267(1996), gr-qc/9512020; R. Borissov, S. Major and L. Smolin, “The geometry of quantum spin networks,” Class. and Quant. Grav.12, 3183(1996), gr-qc/9512043.Google Scholar
- 30.Artem Starodubtsev, “Topological excitations around the vacuum of quantum gravity I: The symmetries of the vacuum,” hep-th/0306135.Google Scholar
- 31.A. Ashtekar, C. Rovelli and L. Smolin,“Weaving a classical geometry with quantum threads,” Phys. Rev. Lett. 69 (1992) 237 hep-th/9203079; Luca Bombelli, “Statistical geometry of random weave states,” gr-qc/0101080; A. Corichi, J.M. Reyes, “A Gaussian Weave for Kinematical Loop Quantum Gravity,” gr-qc/0006067, Int. J. Mod. Phys. D10 (2001) 325-338.Google Scholar
- 32.Rodolfo Gambini, Jorge Pullin, “Nonstandard optics from quantum spacetime”, Phys. Rev. D59 (1999) 124021, gr-qc/9809038;CrossRefGoogle Scholar
- 33.Jorge Alfaro, Hugo A. Morales-Tžcotl, Luis F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D65 (2002) 103509, hep-th/0108061; “Quantum gravity and spin 1/2 particles effective dynamics,” hep-th/0208192, Phys. Rev. D66:124006,2002.Google Scholar
- 34.Hanno Sahlmann, Thomas Thiemann, “Towards the QFT on Curved Spacetime Limit of QGR. I: A General Scheme,” gr-qc/0207030; “Towards the QFT on Curved Spacetime Limit of QGR. II: A Concrete Implementation,” gr-qc/0207031.Google Scholar
- 35.H. Kodama, Prog. Theor. Phys. 80, 1024(1988); Phys. Rev. D42(1990)2548.Google Scholar
- 36.L. Smolin and C. Soo, “The Chern-Simons Invariant as the Natural Time Variable for Classical and Quantum Cosmology,” Nucl. Phys. B449 (1995) 289, gr-qc/9405015.CrossRefGoogle Scholar
- 37.A. Ashtekar, private communication.Google Scholar
- 38.A. Sen, “On the existence of neutrino zero modes in vacuum spacetime,” J. Math. Phys. 22 (1981) 1781, “Gravity as a spin system,” Phys. Lett. B11 (1982) 89.Google Scholar
- 39.Abhay Ashtekar, “New variables for classical and quantum gravity," Phys. Rev. Lett. 57(18), 2244-2247 (1986).CrossRefGoogle Scholar
- 40.C. Soo, “Wave function of the Universe and Chern-Simons Perturbation Theory,” gr-qc/0109046.Google Scholar
- 41.P. A. M. Dirac, Lectures on Quantum Mechanics Belfer Graduate School of Science Monographs, no. 2 (Yeshiva University Press, New York,1964).Google Scholar
- 42.J. Stachel, “Einstein';s search for general covariance, 1912-15” in Einstein and the History of General Relativity vol 1 of Einstein Studies eds. D. Howard and J. Stachel. (Birkhauser, Boston, 1989).Google Scholar
- 43.L. Smolin Three Roads to Quantum Gravity (Weidenfeld and Nicolson and Basic Books, London and New York, 2001)Google Scholar
- 44.Y. Ling and L. Smolin, “Supersymmetric spin networks and quantum supergravity,” Phys. Rev. D61, 044008(2000), hep-th/9904016; “Holographic Formulation of Quantum Supergravity,” hep-th/0009018, Phys. Rev. D63 (2001) 064010.Google Scholar
- 45.M. Atiyah, “Topological quantum field theory” Publ. Math. IHES 68 (1989) 175; The Geometry and Physics of Knots, Lezion Lincee (Cambridge University Press, Cambridge, 1990); G. Segal, Conformal field theory Oxford preprint (1988).Google Scholar
- 46.R. Floreanini and R. Percacci, Phys. Lett. B224 (1989) 291-294; B231:119-124, 1989. V.V. Fock, N.A. Nekrasov, A.A. Rosly, K.G. Selivanov “What we think about the higher dimensional Chern-Simons theories” (Moscow, ITEP). ITEP-91-70, July 1991. 7pp. in Sakharov Conf.1991:465-472 (QC20:I475:1991)Google Scholar
- 47.M. Banados, M. Henneaux, C. Iannuzzo and C. M. Viallet, “A note on the gauge symmetries of pure Chern-Simons theory with p-form gauge fields” gr-qc/9703061; Max Banados, Luis J. Garay and Marc Henneaux, Nucl. Phys. B476:611-635,1996, hep-th/9605159; Phys. Rev. D53:593-596,1996, hep-th/9506187.Google Scholar
- 48.Y. Ling and L. Smolin, “Eleven dimensional supergravity as a constrained topological field theory,” hep-th/0003285, Nucl. Phys. B601 (2001) 191-208.CrossRefGoogle Scholar
- 49.J. Ambjorn, A. Dasgupta, J. Jurkiewiczcy and R. Loll, “A Lorentzian cure for Euclidean troubles”, hep-th/0201104; J. Ambjorn and R. Loll, Nucl. Phys. B536 (1998) 407 [hep-th/9805108]; J. Ambjorn, J. Jurkiewicz and R. Loll, Phys. Rev. Lett. 85 (2000) 924 [hepth/ 0002050]; Nucl. Phys. B610 (2001) 347 [hep-th/0105267]; R. Loll, Nucl. Phys. B (Proc. Suppl.) 94 (2001) 96 [hep-th/0011194]; J. Ambjorn, J. Jurkiewicz and R. Loll, Phys. Rev. D64 (2001) 044011 [hep-th/0011276]; JHEP 09 (2001) 022 [hep-th/0106082].Google Scholar
- 50.T. Jacobson and L. Smolin, Phys. Lett. B 196 (1987) 39; Class. and Quant. Grav. 5 (1988) 583; J. Samuel, Pramana-J Phys. 28 (1987) L429.Google Scholar
- 51.J.F. Plebanski. “On the separation of Einsteinian” J. Math. Phys., 18:2511, 1977.CrossRefGoogle Scholar
- 52.R. Capovilla, J. Dell and T. Jacobson, Phys. Rev. Lett. 21, 2325(1989); Class. Quant. Grav. 8, 59(1991); R. Capovilla, J. Dell, T. Jacobson and L. Mason, Class. and Quant. Grav. 8, 41(1991).Google Scholar
- 53.J. Barbero, “Real Ashtekar variables for Lorentzian signature spacetime,” Phys. Rev. D51 (1995) 5507.Google Scholar
- 54.T. Thiemann, “Quantum Spin Dynamics (QSD) I & II,” Class. Quant. Grav. 15 (1998) 839-905, gr-qc/9606089, gr-qc/9606090.CrossRefGoogle Scholar
- 55.K. Krasnov, “On Quantum Statistical Mechanics of a Schwarzschild Black Hole,” grqc/9605047, Gen. Rel. Grav. 30 (1998) 53-68; C. Rovelli, “Black hole entropy from loop quantum gravity," grqc/9603063.Google Scholar
- 56.A. Ashtekar, J. Baez, K. Krasnov, “Quantum Geometry of Isolated Horizons and Black Hole Entropy,” gr-qc/0005126; A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, “Quantum geometry and black hole entropy,” gr-qc/9710007, Phys. Rev. Lett. 80 (1998) 904-907.Google Scholar
- 57.T. Jacobson and L. Smolin, Nucl. Phys. B 299 (1988) 295.CrossRefGoogle Scholar
- 58.C. Rovelli and L. Smolin, “Knot theory and quantum theory,” Phys. Rev. Lett 61(1988)1155; “Loop representation of quantum general relativity,” Nucl. Phys. B331(1990)80-152.Google Scholar
- 59.R. Gambini and A. Trias, Phys. Rev. D23 (1981) 553, Lett. al Nuovo Cimento 38 (1983) 497; Phys. Rev. Lett. 53 (1984) 2359; Nucl. Phys. B278 (1986) 436; R. Gambini, L. Leal and A. Trias, Phys. Rev. D39 (1989) 3127.Google Scholar
- 60.M. P. Reisenberger. “Worldsheet formulations of gauge theories and gravity,” in Proceedings of the 7th Marcel Grossman Meeting, ed. by R. Jantzen and G. MacKeiser, World Scientific, 1996; gr-qc/9412035; “A lattice worldsheet sum for 4-d Euclidean general relativity,” gr-qc/9711052.Google Scholar
- 61.M. P. Reisenberger and C. Rovelli. “Sum-over-surface form of loop quantum gravity,” gr-qc/9612035, Phys. Rev. D 56 (1997) 3490; “Spacetime as a Feynman diagram: the connection formulation,” Class. Quant. Grav., 18:121140, 2001; “Spin foams as Feynman diagrams,” gr-qc/0002083.Google Scholar
- 62.J. Barrett and L. Crane, “Relativistic spin networks and quantum gravity,” J. Math. Phys. 39 (1998) 3296-3302, gr-qc/9709028.CrossRefGoogle Scholar
- 63.J. Baez, “Spin foam models,” Class. Quant. Grav. 15 (1998) 1827-1858, gr-qc/9709052; “An introduction to spin foam models of quantum gravity and BF theory,” Lect. Notes Phys., 543:2594, 2000.Google Scholar
- 64.Fotini Markopoulou, “Dual formulation of spin network evolution,” gr-qc/9704013.Google Scholar
- 65.Fotini Markopoulou, Lee Smolin, “Quantum geometry with intrinsic local causality,” Phys. Rev. D58 (1998) 084032, gr-qc/9712067.CrossRefGoogle Scholar
- 66.J. Iwasaki, “A reformulation of the Ponzano-Regge quantum gravity model in terms of surfaces,” gr-qc/9410010; “A definition of the Ponzano-Regge quantum gravity model in terms of surfaces,” gr-qc/9505043, J. Math. Phys. 36 (1995) 6288; L. Freidel and K. Krasnov, “Spin foam models and the classical action principle,” Adv. Theor. Math. Phys., 2:11831247, 1999; R. De Pietri, L. Freidel, K. Krasnov, and C. Rovelli, “Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space,” Nucl. Phys. B, 574:785806, 2000.Google Scholar
- 67.B. Bruegmann, R. Gambini and J. Pullin, Phys. Rev. Lett. 68 (1992) 431-434; Rodolfo Gambini, Jorge Griego, Jorge Pullin, “Chern-Simons states in spin-network quantum gravity,” gr-qc/9703042, Phys. Lett. B413 (1997) 260-266; C. Di Bartolo, R. Gambini, J. Griego, J. Pullin, “Consistent canonical quantization of general relativity in the space of Vassiliev knot invariants,” gr-qc/9909063, Phys. Rev. Lett. 84 (2000) 2314-2317; “Canonical quantum gravity in the Vassiliev invariants arena: I. Kinematical structure,” gr-qc/9911009, Class. Quant. Grav. 17 (2000) 3211-3238.Google Scholar
- 68.R. Jackiw, Topological Investigations In Quantized Gauge Theories, p. 258, exercise 3.7, in S. B. Treiman et al. Current Algebra And Anomalies (World Scientific, 1985).Google Scholar
- 69.E. Witten, “A Note On The Chern-Simons And Kodama Wavefunctions,” gr-qc/0306083.Google Scholar
- 70.L. Freidel and L. Smolin, “The linearization of the Kodama state,” hep-th/ 0310224.Google Scholar
- 71.G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D 15, 2738 (1977).CrossRefGoogle Scholar
- 72.L. N. Chang and C. Soo, “Ashtekar';s variables and the topological phase of quantum gravity,” Proceedings of the XXth. Conference on Differential Geometric Methods in Physics, (Baruch College, New York, 1991), edited by S. Catto and A. Rocha (World Scientific, 1992); Phys. Rev. D46 (1992) 4257; C. Soo and L. N. Chang, Int. J. Mod. Phys. D3 (1994) 529.Google Scholar
- 73.T. Jacobson, “New Variables for canonical supergravity,” Class. Quant. Grav.5(1988)923; D. Armand-Ugon, R. Gambini, O. Obregon, J. Pullin, “Towards a loop representation for quantum canonical supergravity,” hep-th/9508036, Nucl. Phys. B460 (1996) 615; L. F. Urrutia “Towards a loop representation of connection theories defined over a super-lie algebra,” hep-th/9609010; H. Kunitomo and T. Sano “The Ashtekar formulation for canonical N=2 supergravity,” Prog. Theor. Phys. suppl. (1993) 31; Takashi Sano and J. Shiraishi, “The Nonperturbative Canonical Quantization of the N=1 Supergravity,” Nucl. Phys. B410 (1993) 423, hep-th/9211104; “The Ashtekar Formalism and WKB Wave Functions of N = 1,2 Supergravities,” hep-th/9211103; T. Kadoyoshi and S. Nojiri, “N = 3 and N = 4 two form supergravities,” Mod. Phys. Lett. A12:1165-1174,1997, hep-th/9703149; K. Ezawa, “Ashtekar';s formulation for N = 1, N = 2 supergravities as constrained BF theories,” Prog. Theor. Phys. 95:863-882, 1996, hep-th/9511047.Google Scholar
- 74.Yi Ling, “Introduction to supersymmetric spin networks”, hep-th/0009020, J. Math. Phys. 43 (2002) 154-169CrossRefGoogle Scholar
- 75.T. Banks, “T C P, Quantum Gravity, The Cosmological Constant And All That”, Nucl. Phys. B249 (1985) 332.CrossRefGoogle Scholar
- 76.L. Smolin, in preparation.Google Scholar
- 77.A. Ashtekar, C. Rovelli and L. Smolin “Gravitons and Loops”, Phys. Rev. D 44 (1991) 1740-1755; J. Iwasaki, C. Rovelli, “Gravitons as embroidery on the weave,” Int. J. Mod. Phys. D 1 (1993) 533; “Gravitons from loops: non-perturbative loop-space quantum gravity contains the graviton-physics approximation,” Class. Quantum Grav. 11 (1994) 1653.Google Scholar
- 78.M. Spradlin, A. Strominger, A. Volovich, “Les Houches Lectures on de Sitter Space,” hep-th/0110007Google Scholar
- 79.G. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories”, Commun. Math. Phys. 125 (1989) 417; V. Husain, “Topological Quantum Mechanics”, Phys. Rev. D43 (1991) 1803.Google Scholar