Spatially Extended Monotone Mappings

  • R Coutinho
  • B Fernandez
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 671)

Abstract

This chapter deals with the study of travelling waves in discrete time spatially extended systems with monotone dynamics. Such systems appear for instance in alloy solidification, in population dynamics and in solid-state physics. Special emphasis is made on the existence of travelling waves, on the uniqueness of their velocity and on their relevance for the description of propagation phenomena in such systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Carretero-Gonz´lez, D.K. Arrowsmith and F. Vivaldi, One-dimensional dynamics for traveling fronts in coupled map lattices, Phys. Rev. E 61 (2000) 1329–1336.CrossRefGoogle Scholar
  2. 2.
    C. Baesens and R.S. MacKay, Gradient dynamics of tilted Frenkel-Kontorova models, Nonlinearity 11 (1998) 949–964.CrossRefGoogle Scholar
  3. 3.
    R. Coutinho and B. Fernandez, Extended symbolic dynamics in bistable CML: Existence and stability of fronts, Physica D 108 (1997) 60–80.CrossRefGoogle Scholar
  4. 4.
    R. Coutinho and B. Fernandez, On the global orbits in a bistable CML, Chaos 7 (1997) 301–310.CrossRefPubMedGoogle Scholar
  5. 5.
    R. Coutinho and B. Fernandez, Fronts and interfaces in bistable extended mappings, Nonlinearity 11 (1998) 1407–1433.CrossRefGoogle Scholar
  6. 6.
    R. Coutinho and B. Fernandez, Fronts in extended systems of bistable maps coupled by convolutions, Nonlinearity 17 (2004) 23–47.CrossRefGoogle Scholar
  7. 7.
    R. Coutinho and B. Fernandez, Spatially extended circle maps: Monotone periodic dynamics of functions with linear growth, J. Nonlinear Sci. 14 (2004) 93–118.CrossRefGoogle Scholar
  8. 8.
    C. Golé, Symplectic twist maps, World Scientific (2001).Google Scholar
  9. 9.
    A. Kolmogorov and S. Fomin, Elements of the theory of functions and of functional analysis, Mir (1976).Google Scholar
  10. 10.
    E. Lukacs, Characteristic functions, Hafner Publishing Co. (1970).Google Scholar
  11. 11.
    W. Rudin, Principles of mathematical analysis, 3rd edition, McGraw-Hill (1976).Google Scholar
  12. 12.
    H. Weinberger, Long-time behaviour of a class of biological models, SIAM J. Math. Anal. 13 (1982) 353–396.Google Scholar

Authors and Affiliations

  • R Coutinho
    • 1
  • B Fernandez
    • 2
  1. 1.Departamento de MatemáticaInstituto Superior TécnicoPortugal
  2. 2.Centre de Physique ThéoriqueCNRS & Universités de Marseille et de Toulon13288 Marseille Cedex 09France

Personalised recommendations